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Abstract

In this paper, the authors obtain the general solution and generalized Ulam - Hyers stability of n dimensional
additive quadratic functional equation

n∑

i=0

[f (x2i + x2i+1) + f (x2i − x2i+1)] =
n∑

i=0

[2f (x2i) + f (x2i+1) + f (−x2i+1)]

in Banach spaces using direct and fixed point methods. We also investigate the stability of the above equation in
Banach algebra using direct and fixed point approach.
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1. Introduction

The study of stability problems for functional equations is related to a question of Ulam [28] concerning the stability
of group homomorphisms was affirmatively answered for Banach spaces by Hyers [13]. Subsequently, this result of
Hyers was generalized by Aoki [2] for additive mappings and by Rassias [23] for linear mappings by considering an
unbounded Cauchy difference.

The article of Rassias [23] has provided a lot of influence in the development of what we now call generalized
Ulam-Hyers stability of functional equations. The terminology generalized Ulam - Hyers stability originates from
these historical backgrounds. These terminologies are also applied to the case of other functional equations. For
more detailed definitions of such terminologies, one can refer to [9, 14, 17, 19] .

Over the last seven decades, the above Ulam problem was tackled by numerous authors who provided solutions
in various forms of functional equations like additive, quadratic, cubic, quartic, mixed type functional equations in-
volving only these types of functional equations were discussed. We refer the interested readers for more information
on such problems to the monographs [1, 9, 12, 14, 17, 19].
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One of the most famous functional equations is the additive functional equation

f(x + y) = f(x) + f(y). (1)

In 1821, it was first solved by A.L. Cauchy in the class of continuous real-valued functions. It is often called an
additive Cauchy functional equation in honor of Cauchy (see [19]). The theory of additive functional equations is
frequently applied to the development of theories of other functional equations. Moreover, the properties of additive
functional equations are powerful tools in almost every field of natural and social sciences. The additive function
f(x) = cx is the solution of the additive functional equation (1). The stability of the above functional equation was
excellently discussed in [2, 10, 13, 21, 23, 26].

The quadratic function f(x) = cx2 satisfies the functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y), (2)

and therefore the equation (2) is called quadratic functional equation.
The Hyers - Ulam stability theorem for the quadratic functional equation (2) was proved by F.Skof [27] for

the functions f : E1 → E2 where E1 is a normed space and E2 be a Banach space. The result of Skof is still
true if the relevant domain E1 is replaced by an Abelian group and it was delt by P.W.Cholewa [7]. S.Czerwik [8]
proved the Hyers-Ulam-Rassias stability of the quadratic functional equation (2). This result further generalized
by Th.M.Rassais [25], C.Borelli, and G.L.Forti [5].

In 2006, K.W. Jun and H.M. Kim [15] introduced the following generalized additive and quadratic type
functional equation

f

(
n∑

i=1

xi

)
+ (n− 2)

n∑

i=1

f (xi) =
∑

1≤ i <j≤n

f (xi + xj) (3)

in the class of function between real vector spaces. For n = 3, Pl.Kannappan proved that a function f satisfies
the functional equation (3) if and only if there exists a symmetric bi-additive function A and additive function B
such that f(x) = B(x, x) + A(x) for all x (see [18]). The Hyers-Ulam stability for the equation (3) when n = 3 was
proved by S.M. Jung [16]. The Hyers-Ulam-Rassias stability for the equation (3) when n = 4 was also investigated
by I.S. Chang et al., [6].

Recently, M. Arunkumar and S. Karthikeyan [3] introduced and established the general solution and generalized
Ulam-Hyers stability of n−dimensional mixed type additive and quadratic functional equation of the form

f (−x1) + f

(
2x1 −

n∑

i=2

xi

)
+ f

(
2

n∑

i=2

xi

)
+ f

(
x1 +

n∑

i=2

xi

)
− f

(
−x1 −

n∑

i=2

xi

)

− f

(
x1 −

n∑

i=2

xi

)
− f

(
−x1 +

n∑

i=2

xi

)
= 3f (x1) + 3f

(
n∑

i=2

xi

)
(4)

in Banach spaces.
Very recently, M.J. Rassias et. al., [24] introduced the Leibniz type additive-quadratic functional equation of

the form

f(x− t) + f(y − t) + f(z − t) = 3f

(
x + y + z

3
− t

)
+ f

(
2x− y − z

3

)
+ f

(−x + 2y − z

3

)
+ f

(−x− y + 2z

3

)

(5)

and obtained its general solution and generalized Ulam - Hyers stability of Leibniz AQ - mixed type functional
equation in Quasi-Beta normed space using direct and fixed point methods.

In this paper, the authors obtain the general solution and generalized Ulam - Hyers stability of n dimensional
additive quadratic functional equation

n∑

i=0

[f (x2i + x2i+1) + f (x2i − x2i+1)] =
n∑

i=0

[2f (x2i) + f (x2i+1) + f (−x2i+1)] (6)

in Banach spaces using direct and fixed point methods. We also investigate the stability of the above equation in
Banach algebra derivations using direct and fixed point approach.
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2. General solution

In this section, the general solution of the functional equation (6) is given. Through out this section let as assume
E and F be real vector spaces.

Lemma 2.1 If an odd mapping f : E → F satisfies the functional equation (1) if and only if f : E → F satisfies
the functional equation (6).

Proof. Assume f : E → F satisfies the functional equation (1). Letting x = y = 0 in (1), we get f(0) = 0. Replacing
y by x and 2x in (1) respectively, we arrive f(2x) = 2f(x) and f(3x) = 3f(x), respectively for all x ∈ E. In general,
for any positive integer a, we obtain

f(ax) = af(x) (7)

for all x ∈ E. Substituting x by x
a in (7), we have

f
(x

a

)
=

1
a
f(x) (8)

for all x ∈ E. Replacing (x, y) by (x0, x1) in (1), we get

f(x0 + x1) = f(x0) + f(x1) (9)

for all x0, x1 ∈ E. Again replacing (x, y) by (x0,−x1) in (1), we get

f(x0 − x1) = f(x0) + f(−x1) (10)

for all x0, x1 ∈ E. Adding (9) and (10), we arrive

f(x0 + x1) + f(x0 − x1) = 2f(x0) + f(x1) + f(−x1) (11)

for all x0, x1 ∈ E. Substituting (x0, x1) by (x2, x3) in (11), we get

f(x2 + x3) + f(x2 − x3) = 2f(x2) + f(x3) + f(−x3) (12)

for all x2, x3 ∈ E. Again substituting (x0, x1) by (x4, x5) in (11), we obtain

f(x4 + x5) + f(x4 − x5) = 2f(x4) + f(x5) + f(−x5) (13)

for all x4, x5 ∈ E. Continuing this process, finally replacing (x0, x1) by (x2n, x2n+1) in (11), we arrive

f(x2n + x2n+1) + f(x2n − x2n+1) = 2f(x2n) + f(x2n+1) + f(−x2n+1) (14)

for all x2n, x2n+1 ∈ E. Adding all the n equations from (11) to (14), we desired our result.
Conversely, let f : E → F satisfies the functional equation (6). Letting x0 = . . . = x2n+1 = 0 in (6), we get

f(0) = 0. Replacing (x0, x1, x2, . . . , x2n, x2n+1) by (x, y, 0, . . . , 0, 0), we get

f(x + y) + f(x− y) = 2f(x) + f(y) + f(−y) (15)

for all x, y ∈ E. Using oddness of f in (15), we have

f(x + y) + f(x− y) = 2f(x) (16)

for all x, y ∈ E. By Theorem 2.1 of [4], we desired our result. Hence the proof is complete.

Lemma 2.2 If an even mapping f : E → F satisfies the functional equation (2) if and only if f : E → F satisfies
the functional equation (6).

Proof. Assume f : E → F satisfies the functional equation (2). Letting x = y = 0 in (2), we get f(0) = 0. Setting
y by x and 2x in (2) respectively, we arrive f(2x) = 4f(x) and f(3x) = 9f(x) for all x ∈ E. In general, for any
positive integer b, we arrive

f(bx) = b2f(x) (17)
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for all x ∈ E. Substituting x by x
b in (17), we have

f
(x

b

)
=

1
b2

f(x) (18)

for all x ∈ E. Replacing (x, y) by (x0, x1) in (2), we get

f(x0 + x1) + f(x0 − x1) = 2f(x0) + 2f(x1) (19)

for all x0, x1 ∈ E. With the help of evenness of f , (19) becomes

f(x0 + x1) + f(x0 − x1) = 2f(x0) + f(x1) + f(−x1) (20)

for all x0, x1 ∈ E. Substituting (x0, x1) by (x2, x3) in (20), we get

f(x2 + x3) + f(x2 − x3) = 2f(x2) + f(x3) + f(−x3) (21)

for all x2, x3 ∈ E. Again substituting (x0, x1) by (x4, x5) in (20), we obtain

f(x4 + x5) + f(x4 − x5) = 2f(x4) + f(x5) + f(−x5) (22)

for all x4, x5 ∈ E. Continuing this process, finally replacing (x0, x1) by (x2n, x2n+1) in (20), we arrive

f(x2n + x2n+1) + f(x2n − x2n+1) = 2f(x2n) + f(x2n+1) + f(−x2n+1) (23)

for all x2n, x2n+1 ∈ E. Adding all the n equations from (20) to (23), we desired our result.
Conversely, let f : E → F satisfies the functional equation (6). Letting x0 = x1 = . . . x2n = x2n+1 = 0 in (6),

we get f(0) = 0. Replacing (x0, x1, x2, . . . , x2n, x2n+1) by (x, y, 0, . . . , 0, 0), we get

f(x + y) + f(x− y) = 2f(x) + f(y) + f(−y) (24)

for all x, y ∈ E. Using evenness of f in (24), we desired our result. Hence the proof is complete.

3. Stability results: A direct method

In section, let us take E be a normed space and F be a Banach space. Define a mapping Df : E → F by

Df(x0, x1, · · · , x2n, x2n+1) =
n∑

i=0

[f (x2i + x2i+1) + f (x2i − x2i+1)]−
n∑

i=0

[2f (x2i) + f (x2i+1) + f (−x2i+1)]

for all x0, x1, · · · , x2n, x2n+1 ∈ E.
In this section, we investigate the generalized Ulam-Hyers stability of the functional equation (6).

Theorem 3.1 Let j = ±1. Let fa : E → F be an odd mapping for which there exist a function ζ : E2n+1 → [0,∞)
with the condition

lim
m→∞

1
2mj

ζ(2mjx0, 2mjx1, · · · , 2mjx2n, 2mjx2n+1) = 0 (25)

such that the functional inequality

‖Dfa(x0, · · · , x2n+1)‖ ≤ ζ(x0, x1, · · · , x2n, x2n+1) (26)

for all x0, · · · , x2n+1 ∈ E. Then there exists a unique additive mapping A : E → F satisfying the functional equation
(6) and

‖fa(x)−A(x)‖ ≤ 1
2

∞∑

k= 1−j
2

1
2kj

ξ(2kjx) (27)

for all x ∈ E, where ξ(2kjx) and A(x) are defined by

ξ(2kjx) =
1
2n

ζ(2kjx, 2kjx, · · · , 2kjx, 2kjx) (28)

and

A(x) = lim
k→∞

1
2kj

fa(2kjx) (29)

for all x ∈ E.
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Proof. Assume j = 1. Replacing (x0, x1, · · · , x2n, x2n+1) by (x, x, · · · , x, x) in (26) and using oddness of fa, we get

‖2n fa(2x)− 4nfa(x)‖ ≤ ζ(x, x, · · · , x, x) (30)

for all x ∈ E. It follows from (30) that
∥∥∥∥

fa(2x)
2

− fa(x)
∥∥∥∥ ≤

ξ(x)
2

where ξ(x) =
1
2n

ζ(x, x, · · · , x, x) (31)

for all x ∈ E. Now replacing x by 2x and dividing by 2 in (31), we get

∥∥∥∥
fa(22x)

22
− fa(2x)

2

∥∥∥∥ ≤
ξ(2x)

22
(32)

for all x ∈ E. From (31) and (32), we obtain

∥∥∥∥
fa(22x)

22
− fa(x)

∥∥∥∥ ≤
∥∥∥∥

fa(2x)
2

− fa(x)
∥∥∥∥ +

∥∥∥∥
fa(22x)

22
− fa(2x)

2

∥∥∥∥ ≤
1
2

[
ξ(x) +

ξ(2x)
2

]
(33)

for all x ∈ E. Continuing this process after m times, one can arrive

∥∥∥∥
fa(2mx)

2m
− fa(x)

∥∥∥∥ ≤
1
2

m−1∑

k=0

ξ(2kx)
2k

≤ 1
2

∞∑

k=0

ξ(2kx)
2k

(34)

for all x ∈ E. In order to prove the convergence of the sequence
{

fa(2mx)
2m

}
, replace x by 2lx and dividing by 2l

in (34), for any m, l > 0 , we deduce

∥∥∥∥
fa(2m+lx)

2(m+l)
− fa(2lx)

2l

∥∥∥∥ =
1
2l

∥∥∥∥
fa(2m · 2lx)

2m
− fa(2lx)

∥∥∥∥ ≤
1
2

∞∑

k=0

ξ(2k+lx)
2k+l

→ 0 as m →∞

for all x ∈ E. Hence the sequence
{

fa(2mx)
2m

}
is Cauchy sequence. Since F is complete, there exists a mapping

A : E → F such that

A(x) = lim
m→∞

fa(2mx)
2m

∀ x ∈ E.

Letting m →∞ in (34) we see that (27) holds for all x ∈ E. To prove that A satisfies (6), replacing (x0, x1, · · · , x2n, x2n+1)
by (2mx0, 2mx1, · · · , 2mx2n, 2mx2n+1) and dividing by 2m in (26), we obtain

1
2m

∥∥∥Dfa(2mx0, 2mx1, · · · , 2mx2n, 2mx2n+1)
∥∥∥ ≤ 1

2m
ζ(2mx0, 2mx1, · · · , 2mx2n, 2mx2n+1)

for all x0, x1, · · · , x2n, x2n+1 ∈ E. Letting m →∞ in the above inequality and using the definition of A(x), we see
that

DA(x0, x1, · · · , x2n, x2n+1) = 0.

Hence A satisfies (6) for all x0, x1, · · · , x2n, x2n+1 ∈ E. To prove that A is unique, let B(x) be another additive
mapping satisfying (6) and (27), then

‖A(x)−B(x)‖ ≤ 1
2m

{‖A(2mx)− fa(2mx)‖+ ‖fa(2mx)−B(2mx)‖} ≤
∞∑

k=0

ξ(2k+mx)
2(k+m)

→ 0 as m →∞

for all x ∈ E. Hence A is unique.
For j = −1, we can prove a similar stability result. This completes the proof of the theorem.
The following Corollary is an immediate consequence of Theorem 3.1 concerning the stability of (6).



International Journal of Advanced Mathematical Sciences 39

Corollary 3.2 Let ρ and s be nonnegative real numbers. Let an odd function fa : E → F satisfies the inequality

‖Dfa(x0, · · · , x2n+1)‖ ≤





ρ,

ρ

{
2n+1∑

i=0

||xi||s
}

, s < 1 or s > 1;

ρ

{
2n+1∏

i=0

||xi||s
}

, s < 1
(2n+1) or s > 1

(2n+1) ;

ρ

{
2n+1∏

i=0

||xi||s +

{
2n+1∑

i=0

||xi||s
}}

, s < 1
(2n+1) or s > 1

(2n+1) ;

(35)

for all x0, x1, · · · , x2n, x2n+1 ∈ E. Then there exists a unique additive function A : E → F such that

‖fa(x)−A(x)‖ ≤





ρ

2n
,

(2n + 1)ρ||x||s
2n|2− 2s| ,

ρ||x||(2n+1)s

2n|2− 2(2n+1)s|
(n + 1)ρ||x||(2n+1)s

n|2− 2(2n+1)s|

(36)

for all x ∈ X.

Theorem 3.3 Let j = ±1. Let fq : E → F be an even mapping for which there exist a function ζ : E2n+1 → [0,∞)
with the condition

lim
k→∞

1
4mj

ζ(2mjx0, 2mjx1, · · · , 2mjx2n, 2mjx2n+1) = 0 (37)

such that the functional inequality

‖Dfq(x0, x1, · · · , x2n, x2n+1)‖ ≤ ζ(x0, x1, · · · , x2n, x2n+1) (38)

for all x0, x1, · · · , x2n, x2n+1 ∈ E. Then there exists a unique quadratic mapping Q : E → F satisfying the functional
equation (6) and

‖fq(x)−Q(x)‖ ≤ 1
4

∞∑

k= 1−j
2

1
4kj

ξ(2kjx) (39)

for all x ∈ E, where ξ(2kjx) and Q(x) are defined by

ξ(2kjx) =
1
2n

ζ(2kjx, 2kjx, · · · , 2kjx, 2kjx) (40)

and

Q(x) = lim
k→∞

1
4kj

fq(2kjx) (41)

for all x ∈ E.

Proof. Assume j = 1. Replacing (x0, x1, · · · , x2n, x2n+1) by (x, x, · · · , x, x) in (38) and using evenness of fq, we get

‖2n fq(2x)− 8nfq(x)‖ ≤ ζ(x, x, · · · , x, x) (42)

for all x ∈ E. It follows from (42) that
∥∥∥∥

fq(2x)
4

− fq(x)
∥∥∥∥ ≤

ξ(x)
4

where ξ(x) =
1
2n

ζ(x, x, · · · , x, x) (43)

for all x ∈ E. The rest of the proof is similar tracing to that of Theorem 3.1.
The following Corollary is an immediate consequence of Theorem 3.3 concerning the stability of (6).
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Corollary 3.4 Let ρ and s be nonnegative real numbers. Let an even function fq : E → F satisfies the inequality

‖Dfq(x0, · · · , x2n+1)‖ ≤





ρ,

ρ

{
2n+1∑

i=0

||xi||s
}

, s < 2 or s > 2;

ρ

{
2n+1∏

i=0

||xi||s
}

, s < 2
(2n+1) or s > 2

(2n+1) ;

ρ

{
2n+1∏

i=0

||xi||s +

{
2n+1∑

i=0

||xi||s
}}

, s < 2
(2n+1) or s > 2

(2n+1) ;

(44)

for all x0, x1, · · · , x2n, x2n+1 ∈ E. Then there exists a unique quadratic function Q : X → Y such that

‖fq(x)−Q(x)‖ ≤





ρ

6n
,

(2n + 1)ρ||x||s
2n|4− 2s| ,

ρ||x||(2n+1)s

2n|4− 2(2n+1)s|
(n + 1)ρ||x||(2n+1)s

n|4− 2(2n+1)s|

(45)

for all x ∈ E.

Now we are ready to prove our mixed stability theorem.

Theorem 3.5 Let j = ±1. Let f : E → F be a mapping for which there exist a function ζ : E2n+1 → [0,∞) with
the condition (25) and (37) such that the functional inequality

‖Df(x0, · · · , x2n+1)‖ ≤ ζ(x0, x1, · · · , x2n, x2n+1) (46)

for all x0, x1, · · · , x2n, x2n+1 ∈ E. Then there exists a unique additive mapping A : E → F and a unique quadratic
mapping Q : E → F such that

‖f(x)−A(x)−Q(x)‖ ≤ 1
2


1

2

∞∑

k= 1−j
2

(
ξ(2kjx)

2kj
+

ξ(−2kjx)
2kj

)
+

1
4

∞∑

k= 1−j
2

(
ξ(2kjx)

4kj
+

ξ(−2kjx)
4kj

)
 (47)

for all x ∈ E, where ξ(x), A(x) and Q(x) are defined in (28), (29) and (41) respectively for all x ∈ E.

Proof. Let fo(x) =
fa(x)− fa(−x)

2
for all x ∈ E. Then fo(0) = 0 and fo(−x) = −fo(x) for all x ∈ X. Hence

‖Dfo(x0, x1, · · · , x2n, x2n+1)‖ ≤ 1
2

[‖Dfa(x0, x1, · · · , x2n, x2n+1)‖+ ‖Dfa(x0, x1, · · · , x2n, x2n+1)‖]

≤ 1
2

[ζ(x0, x1, · · · , x2n, x2n+1) + ζ(−x0,−x1, · · · ,−x2n,−x2n+1)] (48)

for all x0, x1, · · · , x2n, x2n+1 ∈ E. By Theorem 3.1, we have

‖fo(x)−A(x)‖ ≤ 1
4

∞∑

k= 1−j
2

(
ξ(2kjx)

2kj
+

ξ(−2kjx)
2kj

)
(49)

for all x ∈ E. Also, let fe(x) =
fq(x) + fq(−x)

2
for all x ∈ E. Then fe(0) = 0 and fe(−x) = fe(x) for all x ∈ x.

Hence

‖Dfe(x0, x1, · · · , x2n, x2n+1)‖ ≤ 1
2

[‖Dfq(x0, x1, · · · , x2n, x2n+1)‖+ ‖Dfq(x0, x1, · · · , x2n, x2n+1)‖]

≤ 1
2

[ζ(x0, x1, · · · , x2n, x2n+1) + ζ(−x0,−x1, · · · ,−x2n,−x2n+1)] (50)
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for all x0, x1, · · · , x2n, x2n+1 ∈ E. By Theorem 3.3, we have

‖fe(x)−Q(x)‖ ≤ 1
8

∞∑

k= 1−j
2

(
ξ(2kjx)

4kj
+

ξ(−2kjx)
4kj

)
(51)

for all x ∈ E. Define

f(x) = fe(x) + fo(x) (52)

for all x ∈ E. From (49),(51) and (52), we arrive

‖f(x)−A(x)−Q(x)‖ = ‖fe(x) + fo(x)−A(x)−Q(x)‖
≤ ‖fo(x)−A(x)‖+ ‖fe(x)−Q(x)‖

≤ 1
4

∞∑

k= 1−j
2

(
ξ(2kjx)

2kj
+

ξ(−2kjx)
2kj

)
+

1
8

∞∑

k= 1−j
2

(
ξ(2kjx)

4kj
+

ξ(−2kjx)
4kj

)

for all x ∈ E. Hence the theorem is proved.
Using Corollaries 3.2 and 3.4 we have the following Corollary concerning the stability of (6).

Corollary 3.6 Let ρ and s be nonnegative real numbers. Let a function f : E → F satisfies the inequality

‖Df(x0, · · · , x2n+1)‖ ≤





ρ,

ρ

{
2n+1∑

i=0

||xi||s
}

, s 6= 1, 2;

ρ

{
2n+1∏

i=0

||xi||s
}

, s 6= 1
(2n+1) ,

2
(2n+1) ;

ρ

{
2n+1∏

i=0

||xi||s +

{
2n+1∑

i=0

||xi||s
}}

, s 6= 1
(2n+1) ,

2
(2n+1) ;

(53)

for all x0, x1, · · · , x2n, x2n+1 ∈ E. Then there exists a unique additive function A : E → F and a unique quadratic
function Q : E → F such that

‖f(x)−A(x)−Q(x)‖ ≤





ρ

(
1
2n

+
1
6n

)
,

(2n + 1)ρ||x||s
(

1
n|2− 2s| +

1
n|4− 2s|

)
,

ρ||x||(2n+1)s

(
1

n|2− 2(2n+1)s| +
1

n|4− 2(2n+1)s|
)

,

(n + 1)ρ||x||(2n+1)s

(
1

n|2− 2(2n+1)s| +
1

n|4− 2(2n+1)s|
)

(54)

for all x ∈ E.

4. Stability results: fixed point method

In this section, we apply a fixed point method for achieving stability of the n dimensional AQ - mixed type functional
equation (6).

Now, we present the following theorem due to B. Margolis and J.B. Diaz [20] for fixed point Theory.

Theorem 4.1 [20] Suppose that for a complete generalized metric space (Ω, δ) and a strictly contractive mapping
T : Ω → Ω with Lipschitz constant L. Then, for each given x ∈ Ω , either

d(Tnx, Tn+1x) = ∞ ∀ n ≥ 0,

or there exists a natural number n0 such that
(FP1) d(Tnx, Tn+1x) < ∞ for all n ≥ n0 ;
(FP2) The sequence (Tnx) is convergent to a fixed to a fixed point y∗ of T
(FP3) y∗ is the unique fixed point of T in the set ∆ = {y ∈ Ω : d(Tn0x, y) < ∞};
(FP4) d(y∗, y) ≤ 1

1−Ld(y, Ty) for all y ∈ ∆.
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Using the above theorem, we now obtain the generalized Ulam - Hyers stability of (6).

Theorem 4.2 Let fa : E → F be a odd mapping for which there exist a function ζ : E2n+1 → [0,∞) with the
condition

lim
k→∞

1
κk

i

ζ(κk
i x0, κ

k
i x1, · · · , κk

i x2n, κk
i x2n+1) = 0 (55)

where

κi =
{

2 if i = 0;
1
2 if i = 1,

(56)

such that the functional inequality

‖Dfa(x0, x1, · · · , x2n, x2n+1)‖ ≤ ζ(x0, x1, · · · , x2n, x2n+1) (57)

for all x0, x1, · · · , x2n, x2n+1 ∈ E. If there exists L = L(i) < 1 such that the function

x → ψ(x) = ξ
(x

2

)
,

has the property

ψ(x) = L κi ψ (κix) . (58)

for all x ∈ E. Then there exists a unique additive mapping A : E → F satisfying the functional equation (6) and

‖fa(x)−A(x)‖ ≤ L1−i

1− L
ψ(x) (59)

for all x ∈ E.

Proof. Consider the set
Γ = {p/p : E → F, p(0) = 0}

and introduce the generalized metric on Γ,

d(p, q) = inf{K ∈ (0,∞) :‖ p(x)− q(x) ‖≤ Kψ(x), x ∈ E}.

It is easy to see that (Γ, d) is complete.
Define Υ : Γ → Γ by

Υp(x) =
1
κi

p(κix),

for all x ∈ E. Now p, q ∈ Γ,

d(p, q) ≤ K ⇒ ‖ p(x)− q(x) ‖≤ Kψ(x), x ∈ E.

⇒
∥∥∥∥

1
κi

p(κix)− 1
κi

q(κix)
∥∥∥∥ ≤

1
κi

Kψ(κix), x ∈ E,

⇒
∥∥∥∥

1
κi

p(κix)− 1
κi

q(κix)
∥∥∥∥ ≤ LKψ(x), x ∈ E,

⇒ ‖ Υp(x)−Υq(x) ‖≤ LKψ(x), x ∈ E,

⇒d(p, q) ≤ LK.

This implies d(Υp, Υq) ≤ Ld(p, q), for all p, q ∈ Γ. i.e., T is a strictly contractive mapping on Γ with Lipschitz
constant L.

From (31), we arrive
∥∥∥∥

fa(2x)
2

− fa(x)
∥∥∥∥ ≤

ξ(x)
2

(60)
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where
ξ(x) =

1
2n

ζ(x, x, · · · , x, x)

for all x ∈ E. Using (58) for the case i = 0 it reduces to
∥∥∥∥

fa(2x)
2

− fa(x)
∥∥∥∥ ≤ Lψ(x)

for all x ∈ E,
i.e., d(Υfa, fa) ≤ L ⇒ d(Υfa, fa) ≤ L = L1 < ∞.

Again replacing x = x
2 in (60), we get

∥∥∥fa(x)− 2fa

(x

2

)∥∥∥ ≤ ξ
(x

2

)
(61)

Using (58) for the case i = 1 it reduces to
∥∥∥fa(x)− 2fa

(x

2

)∥∥∥ ≤ ψ(x)

for all x ∈ E,
i.e., d(fa,Υfa) ≤ 1 ⇒ d(fa, Υfa) ≤ 1 = L0 < ∞.

From the above two cases, we arrive
d(fa,Υfa) ≤ L1−i

Therefore (FP1) holds.
By (FP2), it follows that there exists a fixed point A of Υ in Γ such that

A(x) = lim
k→∞

fa(κk
i x)

κk
i

, ∀ x ∈ E (62)

To order to prove A : E → F is additive. Replacing (x0, · · · , x2n+1) by (κk
i x0, · · · , κk

i x2n+1) in (57) and dividing
by κk

i , it follows from (55) that

1
κk

i

∥∥∥Dfa(κk
i x0, κ

k
i x1, · · · , κk

i x2n, κk
i x2n+1)

∥∥∥ ≤ 1
κk

i

ζ(κk
i x0, κ

k
i x1, · · · , κk

i x2n, κk
i x2n+1)

for all x0, x1, · · · , x2n, x2n+1 ∈ E. Letting k → ∞ in the above inequality and using the definition of A(x), we see
that

DA(x0, x1, · · · , x2n, x2n+1) = 0

i.e., A satisfies the functional equation (6) for all x0, x1, · · · , x2n, x2n+1 ∈ E.
By (FP3), A is the unique fixed point of Υ in the set

∆ = {A ∈ Γ : d(fa, A) < ∞},
such that

‖fa(x)−A(x)‖ ≤ Kψ(x)

for all x ∈ E and K > 0. Finally by (FP4), we obtain

d(fa, A) ≤ 1
1− L

d(fa, Υfa)

this implies

d(fa, A) ≤ L1−i

1− L

which yields

‖fa(x)−A(x)‖ ≤ L1−i

1− L
ψ(x)

this completes the proof of the theorem.
The following Corollary is an immediate consequence of Theorem 4.2 concerning the stability of (6).
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Corollary 4.3 Let fa : X → Y be a mapping and there exists real numbers ρ and s such that

‖Dfa(x0, · · · , x2n+1)‖ ≤





(i) ρ,

(ii) ρ





2n+1∑

j=0

||xj ||s


 , s < 1 or s > 1;

(iiii) ρ





2n+1∏

j=0

||xj ||s


 , s < 1

(2n+1) or s > 1
(2n+1) ;

(iv) ρ





2n+1∏

j=0

||xj ||s +





2n+1∑

j=0

||xj ||s






 , s < 1

(2n+1) or s > 1
(2n+1) ;

(63)

for all x0, x1, · · · , x2n, x2n+1 ∈ E. Then there exists a unique additive function A : E → F such that

‖fa(x)−A(x)‖ ≤





(i)
|ρ|
n

,

(ii)
(2n + 1)ρ||x||s

n|2− 2s| ,

(iii)
ρ||x||(2n+1)s

n|2− 2(2n+1)s| ,

(iv)
(2n + 2)ρ||x||(2n+1)s

n|2− 2(2n+1)s| ,

(64)

for all x ∈ E.

Proof. Setting

ζ(x0, x1, · · · , x2n, x2n+1) =





ρ,

ρ





2n+1∑

j=0

||xj ||s


 ,

ρ





2n+1∏

j=0

||xj ||s


 ,

ρ





2n+1∏

j=0

||xj ||s +





2n+1∑

j=0

||xj ||s






 ,

for all x0, x1, · · · , x2n, x2n+1 ∈ E. Now,

1
κk

i

ζ(κk
i x0, · · · , κk

i x2n+1) =





ρ
κk

i

,

ρ
κk

i





2n+1∑

j=0

||κk
i xi||s



 ,

ρ
κk

i





2n+1∏

j=0

||κk
i xj ||s



 ,

ρ
κk

i





2n+1∏

j=0

||κk
i xj ||s +





2n+1∑

j=0

||κk
i xj ||s







 ,

=





→ 0 as n →∞,
→ 0 as n →∞,
→ 0 as n →∞,
→ 0 as n →∞.

Thus, (55) is holds.
But we have ψ(x) = ξ

(
x
2

)
has the property ψ(x) = L · κi ψ (κix) for all x ∈ E. Hence

ψ(x) = ξ
(x

2

)
=

1
2n

ζ
(x

2
,
x

2
, · · · ,

x

2
,
x

2

)
=





ρ

n
(2n + 1)ρ

2sn
||x||s,

ρ

2(2n+1)sn
||x||(2n+1)s,

(2n + 2)ρ
2(2n+1)sn

||x||(2n+1)s.
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Now,

1
κi

ψ(κix) =





ρ

κin
(2n + 1)ρ

κi2sn
||κix||s,

ρ

κi2(2n+1)sn
||κix||(2n+1)s,

(2n + 2)ρ
κi2(2n+1)sn

||κix||(2n+1)s.

=





κ−1
i

ρ

n
,

κs−1
i

(2n + 1)ρ
2sn

||x||s,
κ

(2n+1)s−1
i

ρ

2(2n+1)sn
||x||(2n+1)s,

κ
(2n+1)s−1
i

(2n + 2)ρ
2(2n+1)sn

||x||(2n+1)s.

=





κ−1
i ψ(x),

κs−1
i ψ(x),

κ
(2n+1)s−1
i ψ(x),

κ
(2n+1)s−1
i ψ(x).

Hence the inequality (58) holds either, L = 2−1 for s = 0 if i = 0 and L = 1
2−1 for s = 0 if i = 1. Now from

(59), we prove the following cases for condition (i).
Case:1 L = 2−1 for s = 0 if i = 0

‖fa(x)−A(x)‖ ≤
(
2−1

)1−0

1− 2−1
ψ(x) =

ρ

n
.

Case:2 L = 1
2−1 for s = 0 if i = 1

‖fa(x)−A(x)‖ ≤
(

1
2−1

)1−1

1− 1
2−1

ψ(x) =
−ρ

n
.

Also the inequality (58) holds either, L = 2s−1 for s < 1 if i = 0 and L = 1
2s−1 for s > 1 if i = 1. Now from

(59), we prove the following cases for condition (ii).
Case:1 L = 2s−1 for s < 1 if i = 0

‖fa(x)−A(x)‖ ≤
(
2(s−1)

)1−0

1− 2(s−1)
ψ(x) =

1
2− 2s

(2n + 1)ρ
n

||x||s =
(2n + 1)ρ||x||s

n(2− 2s)
.

Case:2 L = 1
2s−1 for s > 1 if i = 1

‖fa(x)−A(x)‖ ≤
(

1
2(s−1)

)1−1

1− 1
2(s−1)

ψ(x) =
1

2s − 2
(2n + 1)ρ

n
||x||s =

(2n + 1)ρ||x||s
n(2s − 2)

.

Again, the inequality (58) holds either, L = 2(2n+1)s−1 for s < 1
(2n+1) if i = 0 and L = 1

2(2n+1)s−1 for s > 1
(2n+1)

if i = 1. Now from (59), we prove the following cases for condition (iii).
Case:1 L = 2(2n+1)s−1 for s < 1

(2n+1) if i = 0

‖fa(x)−A(x)‖ ≤
(
2((2n+1)s−1)

)1−0

1− 2((2n+1)s−1)
ψ(x) =

1
2− 2(2n+1)s

ρ

n
||x||(2n+1)s =

ρ||x||(2n+1)s

n(2− 2(2n+1)s)
.

Case:2 L = 1
2(2n+1)s−1 for s > 1

(2n+1) if i = 1

‖fa(x)−A(x)‖ ≤
(

1
2((2n+1)s−1)

)1−1

1− 1
2((2n+1)s−1)

ψ(x) =
1

2(2n+1)s − 2
ρ

n
||x||(2n+1)s =

ρ||x||(2n+1)s

n(2(2n+1)s − 2)
.

Finally the inequality (58) holds either, L = 2(2n+1)s−1 for s < 1
(2n+1) if i = 0 and L = 1

2(2n+1)s−1 for s > 1
(2n+1)

if i = 1. Now from (59), we prove the following cases for condition (iv).
Case:1 L = 2(2n+1)s−1 for s < 1

(2n+1) if i = 0

‖fa(x)−A(x)‖ ≤
(
2((2n+1)s−1)

)1−0

1− 2((2n+1)s−1)
ψ(x) =

1
2− 2(2n+1)s

(2n + 2)ρ
n

||x||(2n+1)s =
(2n + 2)ρ||x||(2n+1)s

n(2− 2(2n+1)s)
.
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Case:2 L = 1
2(2n+1)s−1 for s > 1

(2n+1) if i = 1

‖fa(x)−A(x)‖ ≤
(

1
2((2n+1)s−1)

)1−1

1− 1
2((2n+1)s−1)

ψ(x) =
1

2(2n+1)s − 2
(2n + 2)ρ

n
||x||(2n+1)s =

(2n + 2)ρ||x||(2n+1)s

n(2(2n+1)s − 2)
.

Hence the proof is complete.
The proof of the following Theorem and corollary is similar tracing to that of Theorem 4.2 and Corollary 4.3.

Hence we omit the proofs.

Theorem 4.4 Let fq : E → F be a even mapping for which there exist a function ζ : E2n+1 → [0,∞) with the
condition

lim
k→∞

1
κ2k

i

ζ(κk
i x0, κ

k
i x1, · · · , κk

i x2n, κk
i x2n+1) = 0 (65)

where κi is defined in (56) such that the functional inequality

‖Dfq(x0, x1, · · · , x2n, x2n+1)‖ ≤ ζ(x0, x1, · · · , x2n, x2n+1) (66)

for all x0, x1, · · · , x2n, x2n+1 ∈ E. If there exists L = L(i) < 1 such that the function

x → ψ(x) = ξ
(x

2

)
,

has the property

ψ(x) = L κ2
i ψ (κix) . (67)

for all x ∈ E. Then there exists a unique quadratic mapping Q : E → F satisfying the functional equation (6) and

‖fq(x)−Q(x)‖ ≤ L1−i

1− L
ψ(x) (68)

for all x ∈ E.

Corollary 4.5 Let fq : E → F be a even mapping and there exits real numbers ρ and s such that

‖Dfq(x0, · · · , x2n+1)‖ ≤





(i) ρ,

(ii) ρ





2n+1∑

j=0

||xj ||s


 , s < 2 or s > 2;

(iii) ρ





2n+1∏

j=0

||xj ||s


 , s < 2

(2n+1) or s > 2
(2n+1) ;

(iv) ρ





2n+1∏

j=0

||xj ||s +





2n+1∑

j=0

||xj ||s






 , s < 2

(2n+1) or s > 2
(2n+1) ;

(69)

for all x0, x1, · · · , x2n, x2n+1 ∈ E. Then there exists a unique quadratic function Q : E → F such that

‖fq(x)−Q(x)‖ ≤





(i)
2ρ

3n
,

(ii)
(2n + 1)ρ||x||s

n|4− 2s| ,

(iii)
ρ||x||(2n+1)s

n|4− 2(2n+1)s|
(iv)

(2n + 2)ρ||x||(2n+1)s

n|4− 2(2n+1)s|

(70)

for all x ∈ E.

Now, we are ready to prove the main fixed point stability results.
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Theorem 4.6 Let f : E → F be a mapping for which there exist a function ζ : E2n+1 → [0,∞) with the conditions
(55) and (65) where κi is defined (56) such that the functional inequality

‖Df(x0, x1, · · · , x2n, x2n+1)‖ ≤ ζ(x0, x1, · · · , x2n, x2n+1) (71)

for all x0, x1, · · · , x2n, x2n+1 ∈ E. If there exists L = L(i) < 1 such that the function

x → ψ(x) = ξ
(x

2

)
,

has the properties (58) and (67) for all x ∈ E. Then there exists a unique additive mapping A : E → F and a
unique quadratic mapping Q : E → F satisfying the functional equation (6) and

‖f(x)−A(x)−Q(x)‖ ≤ L1−i

1− L
(ψ(x) + ψ(−x)) (72)

for all x ∈ E.

Proof. It follows from (48) and Theorem 4.2, we have

‖fo(x)−A(x)‖ ≤ 1
2

L1−i

1− L
(ψ(x) + ψ(−x)) (73)

for all x ∈ E. Also, it follows from (49) and Theorem 4.4, we have

‖fe(x)−Q(x)‖ ≤ 1
2

L1−i

1− L
(ψ(x) + ψ(−x)) (74)

for all x ∈ E. Define

f(x) = fe(x) + fo(x) (75)

for all x ∈ E. From (73),(74) and (75), we arrive

‖f(x)−A(x)−Q(x)‖ = ‖fe(x) + fo(x)−A(x)−Q(x)‖ ≤ ‖fo(x)−A(x)‖+ ‖fe(x)−Q(x)‖

≤ 1
2

L1−i

1− L
[(ψ(x) + ψ(−x)) + (ψ(x) + ψ(−x))]

≤ L1−i

1− L
(ψ(x) + ψ(−x))

for all x ∈ X. Hence the theorem is proved.
The following Corollary is an immediate consequence of Theorem 4.6, using Corollaries 4.3 and 4.5 concerning

the stability of (6).

Corollary 4.7 Let f : E → F be a mapping and there exists real numbers ρ and s such that

‖Df(x0, · · · , x2n+1)‖ ≤





ρ,

ρ

{
2n+1∑

i=0

||xi||s
}

, s 6= 1, 2;

ρ

{
2n+1∏

i=0

||xi||s
}

, s 6= 1
(2n+1) ,

2
(2n+1) ;

ρ

{
2n+1∏

i=0

||xi||s +

{
2n+1∑

i=0

||xi||s
}}

, 6= 1
(2n+1) ,

2
(2n+1) ;

(76)

for all x0, x1, · · · , x2n, x2n+1 ∈ E. Then there exists a unique additive function A : E → F and a unique quadratic
function Q : E → F such that

‖f(x)−A(x)−Q(x)‖ ≤





ρ

(
1
n

+
1
3n

)
,

(2n + 1)ρ||x||s
(

1
n|2− 2s| +

1
n|4− 2s|

)
,

ρ||x||(2n+1)s

(
1

n|2− 2(2n+1)s| +
1

n|4− 2(2n+1)s|
)

,

(2n + 2)ρ||x||(2n+1)s

(
1

n|2− 2(2n+1)s| +
1

n|4− 2(2n+1)s|
)

(77)

for all x ∈ E.
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5. Basic results in Banach algebra

Here after, through out this paper, let us consider X and Y to be a normed Algebra and a Banach Algebra,
respectively.

Definition 5.1 A C−linear mapping A : X → X is called Additive Derivation on X if A satisfies

A(xy) = A(x)y + xA(y) (78)

for all x, y ∈ X.

Definition 5.2 A C−linear mapping A : X → X is called Generalized Additive Derivation on X if A satisfies

A(x1x2 · · ·xn) = A(x1)(x2 · · ·xn) + · · · · · ·+ (x1x2 · · ·xn−1)A(xn) (79)

for all x1, x2, · · ·xn ∈ X.

Definition 5.3 A C−linear mapping Q : X → X is called Quadratic Derivation on X if Q satisfies

Q(xy) = Q(x)y2 + x2Q(y) (80)

for all x, y ∈ X.

Definition 5.4 A C−linear mapping Q : X → X is called Generalized Quadratic Derivation on X if Q
satisfies

Q(x1x2 · · ·xn) = Q(x1)(x2
2 · · ·x2

n) + · · · · · ·+ (x2
1x

2
2 · · ·x2

n−1)Q(xn) (81)

for all x1, x2, · · ·xn ∈ X.

6. Stability results: direct method

In this section, we investigate the generalized Ulam-Hyers stability of the functional equation (6).

Theorem 6.1 Let j = ±1. Let fa : X → Y be an odd mapping for which there exists a function ζ : X2n+1 → [0,∞)
with the conditions

lim
m→∞

1
2mj

ζ(2mjx0, 2mjx1, · · · , 2mjx2n, 2mjx2n+1) = 0 (82)

lim
m→∞

1
2(2n+1)mj

ρ(2mjx0, 2mjx1, · · · , 2mjx2n, 2mjx2n+1) = 0 (83)

satisfying the functional inequalities

‖Dfa(x0, x1, · · · , x2n, x2n+1)‖Y ≤ ζ(x0, x1, · · · , x2n, x2n+1) (84)

and
∥∥∥fa(x0x1 · · ·x2nx2n+1)− fa(x0)(x1 · · ·x2nx2n+1)− · · ·

− (x0x1 · · ·x2n)fa(x2n+1)
∥∥∥

Y
≤ ρ(x0, x1, · · · , x2n, x2n+1) (85)

for all x0, x1, · · · , x2n, x2n+1 ∈ X. Then there exists a unique additive derivation mapping A : X → Y satisfying
the functional equation (6) and

‖fa(x)−A(x)‖Y ≤ 1
2

∞∑

k= 1−j
2

1
2kj

ξ(2kjx) (86)

for all x ∈ X, where ξ(x) and A(x) are defined in (28) and (29) respectively for all x ∈ X.
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Proof. By Theorem 3.1, A(x) is a unique additive mapping which satisfies (6) for all x0, x1, · · · , x2n, x2n+1 ∈ X. It
follows form (85) and (83),
∥∥∥A(x0x1 · · ·x2nx2n+1)−A(x0)(x1 · · ·x2nx2n+1)− · · · − (x0x1 · · ·x2n)A(x2n+1)

∥∥∥
Y

=
1

2(2n+1)m

∥∥∥fa(2mx02mx1 · · · 2mx2n2mx2n+1)− fa(2mx0)(2mx1 · · · 2mx2n2mx2n+1)− · · ·

− (2mx02mx1 · · · 2mx2n)fa(2mx2n+1)
∥∥∥

Y

≤ 1
2(2n+1)m

ρ(2mx0, 2mx1, · · · , 2mx2n, 2mx2n+1)

→ 0 as m →∞

Thus the mapping A : X → Y is a unique additive derivation mapping satisfying (6).

Corollary 6.2 Let ρ and s be nonnegative real numbers. Let an odd function fa : X → Y satisfies the functional
inequalities

‖Dfa(x0, x1, · · · , x2n, x2n+1)‖Y

≤





ρ,

ρ

{
2n+1∑

i=0

||xi||sX
}

, s < 1 or s > 1;

ρ

{
2n+1∏

i=0

||xi||sX
}

, s < 1
(2n+1) or s > 1

(2n+1) ;

ρ

{
2n+1∏

i=0

||xi||sX +

{
2n+1∑

i=0

||xi||sX
}}

, s < 1
(2n+1) or s > 1

(2n+1) ;

(87)

∥∥∥fa(x0x1 · · ·x2nx2n+1)− fa(x0)(x1 · · ·x2nx2n+1)− · · · − (x0x1 · · ·x2n)fa(x2n+1)
∥∥∥

Y

≤





ρ,

ρ

{
2n+1∑

i=0

||xi||sX
}

, s < 1 or s > 1;

ρ

{
2n+1∏

i=0

||xi||sX
}

, s < 1
(2n+1) or s > 1

(2n+1) ;

ρ

{
2n+1∏

i=0

||xi||sX +

{
2n+1∑

i=0

||xi||sX
}}

, s < 1
(2n+1) or s > 1

(2n+1) ;

(88)

for all x0, x1, · · · , x2n, x2n+1 ∈ X. Then there exists a unique additive derivation function A : X → Y such that

‖fa(x)−A(x)‖Y ≤





ρ

2n
,

(2n + 1)ρ||x||sX
2n|2− 2s| ,

ρ||x||(2n+1)s
X

2n|2− 2(2n+1)s|
(n + 1)ρ||x||(2n+1)s

X

n|2− 2(2n+1)s|

(89)

for all x ∈ X.

Theorem 6.3 Let j = ±1. Let fq : X → Y be an even mapping for which there exists a function ζ : X2n+1 → [0,∞)
with the conditions

lim
m→∞

1
4mj

ζ(2mjx0, 2mjx1, · · · , 2mjx2n, 2mjx2n+1) = 0 (90)
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lim
m→∞

1
4(2n+1)mj

ρ(2mjx0, 2mjx1, · · · , 2mjx2n, 2mjx2n+1) = 0 (91)

satisfying the functional inequalities

‖Dfq(x0, x1, · · · , x2n, x2n+1)‖Y ≤ ζ(x0, x1, · · · , x2n, x2n+1) (92)

and∥∥∥fq(x0x1 · · ·x2nx2n+1)− fq(x0)(x2
1 · · ·x2

2nx2
2n+1)− · · ·

− (x2
0x

2
1 · · ·x2

2n)fq(x2n+1)
∥∥∥

Y
≤ ρ(x0, x1, · · · , x2n, x2n+1) (93)

for all x0, x1, · · · , x2n, x2n+1 ∈ X. Then there exists a unique quadratic derivation mapping Q : X → Y satisfying
the functional equation (6) and

‖fq(x)−Q(x)‖Y ≤ 1
4

∞∑

k= 1−j
2

1
4kj

ξ(2kjx) (94)

for all x ∈ X, where ξ(x) and Q(x) are defined in (28) and (41) respectively for all x ∈ X.

Proof. By Theorem 3.3, Q(x) is a unique quadratic derivation mapping which satisfies (6) for all x0, x1, · · · , x2n, x2n+1 ∈
X. It follows form (93) and (91),
∥∥∥Q(x0x1 · · ·x2nx2n+1)−Q(x0)(x2

1 · · ·x2
2nx2

2n+1)− · · · − (x2
0x

2
1 · · ·x2

2n)Q(x2n+1)
∥∥∥

Y

=
1

2(2n+1)m

∥∥∥fq(2mx02mx1 · · · 2mx2n2mx2n+1)− fq(2mx0)(2mx2
1 · · · 2mx2

2n2mx2
2n+1)− · · ·

− (2mx2
02

mx2
1 · · · 2mx2

2n)fq(2mx2n+1)
∥∥∥

Y

≤ 1
2(2n+1)m

ρ(2mx0, 2mx1, · · · , 2mx2n, 2mx2n+1)

→ 0 as m →∞
Thus the mapping Q : X → Y is a unique quadratic derivation mapping satisfying (6).

Corollary 6.4 Let ρ and s be nonnegative real numbers. Let an even function fq : X → Y satisfies the inequality

‖Dfq(x0, x1, · · · , x2n, x2n+1)‖Y

≤





ρ,

ρ

{
2n+1∑

i=0

||xi||sX
}

, s < 2 or s > 2;

ρ

{
2n+1∏

i=0

||xi||sX
}

, s < 2
(2n+1) or s > 2

(2n+1) ;

ρ

{
2n+1∏

i=0

||xi||sX +

{
2n+1∑

i=0

||xi||sX
}}

, s < 2
(2n+1) or s > 2

(2n+1) ;

(95)

∥∥∥fq(x0x1 · · ·x2nx2n+1)− fq(x0)(x2
1 · · ·x2

2nx2
2n+1)− · · · − (x2

0x
2
1 · · ·x2

2n)fq(x2n+1)
∥∥∥

Y

≤





ρ,

ρ

{
2n+1∑

i=0

||xi||sX
}

, s < 2 or s > 2;

ρ

{
2n+1∏

i=0

||xi||sX
}

, s < 2
(2n+1) or s > 2

(2n+1) ;

ρ

{
2n+1∏

i=0

||xi||sX +

{
2n+1∑

i=0

||xi||sX
}}

, s < 2
(2n+1) or s > 2

(2n+1) ;

(96)
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for all x0, x1, · · · , x2n, x2n+1 ∈ X. Then there exists a unique quadratic derivation function Q : X → Y such that

‖fq(x)−Q(x)‖Y ≤





ρ

6n
,

(2n + 1)ρ||x||sX
2n|4− 2s| ,

ρ||x||(2n+1)s
X

2n|4− 2(2n+1)s|
(n + 1)ρ||x||(2n+1)s

X

n|4− 2(2n+1)s|

(97)

for all x ∈ X.

Theorem 6.5 Let j = ±1. Let f : X → Y be a mapping for which there exist a function ζ : X2n+1 → [0,∞) with
the conditions (82), (83), (90)and (91) such that the functional inequalities

‖Df(x0, x1, · · · , x2n, x2n+1)‖Y ≤ ζ(x0, x1, · · · , x2n, x2n+1) (98)

and (84), (85), (92)and (93) for all x0, x1, · · · , x2n, x2n+1 ∈ X. Then there exists a unique additive derivation
mapping A : X → Y and a unique quadratic derivation mapping Q : X → Y such that

‖f(x)−A(x)−Q(x)‖Y ≤ 1
2


1

2

∞∑

k= 1−j
2

(
ξ(2kjx)

2kj
+

ξ(−2kjx)
2kj

)
+

1
4

∞∑

k= 1−j
2

(
ξ(2kjx)

4kj
+

ξ(−2kjx)
4kj

)
 (99)

for all x ∈ X, where ξ(x), A(x) and Q(x) are defined in (28), (29) and (41) respectively for all x ∈ X.

Proof. The proof is similar to that of Theorem 3.5.

Corollary 6.6 Let ρ and s be nonnegative real numbers. Let a function f : X → Y satisfies the inequality

‖Df(x0, x1, · · · , x2n, x2n+1)‖Y

≤





ρ,

ρ

{
2n+1∑

i=0

||xi||sX
}

, s 6= 1, 2;

ρ

{
2n+1∏

i=0

||xi||sX
}

, s 6= 1
(2n+1) ,

2
(2n+1) ;

ρ

{
2n+1∏

i=0

||xi||sX +

{
2n+1∑

i=0

||xi||sX
}}

, s 6= 1
(2n+1) ,

2
(2n+1) ;

(100)

for all x0, x1, · · · , x2n, x2n+1 ∈ X. Then there exists a unique additive derivation function A : X → Y and a unique
quadratic derivation function Q : X → Y such that

‖f(x)−A(x)−Q(x)‖Y ≤





ρ

(
1
2n

+
1
6n

)
,

(2n + 1)ρ||x||s
(

1
2n|2− 2s| +

1
2n|4− 2s|

)
,

ρ||x||(2n+1)s

(
1

2n|2− 2(2n+1)s| +
1

2n|4− 2(2n+1)s|
)

,

(2n + 2)ρ||x||(2n+1)s

(
1

n|2− 2(2n+1)s| +
1

n|4− 2(2n+1)s|
)

(101)

for all x ∈ X.

7. Stability results: fixed point method

Theorem 7.1 Let fa : X → Y be a odd mapping for which there exist a function ζ : X2n+1 → [0,∞) with the
conditions

lim
k→∞

1
κk

i

ζ(κk
i x0, κ

k
i x1, · · · , κk

i x2n, κk
i x2n+1) = 0 (102)
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lim
k→∞

1

κ
(2n+1)k
i

ρ(κk
i x0, κ

k
i x1, · · · , κk

i x2n, κk
i x2n+1) = 0 (103)

where κi is defined in (56) satisfying the functional inequalities

‖Dfa(x0, x1, · · · , x2n, x2n+1)‖Y ≤ ζ(x0, x1, · · · , x2n, x2n+1) (104)

and
∥∥∥fa(x0x1 · · ·x2nx2n+1)− fa(x0)(x1 · · ·x2nx2n+1)− · · ·

− (x0x1 · · ·x2n)fa(x2n+1)
∥∥∥

Y
≤ ρ(x0, x1, · · · , x2n, x2n+1) (105)

for all x0, x1, · · · , x2n, x2n+1 ∈ X. If there exists L = L(i) < 1 such that the function

x → ψ(x) = ξ
(x

2

)
,

has the property

ψ(x) = L κi ψ (κix) . (106)

for all s ∈ X. Then there exists a unique additive derivation mapping A : X → Y satisfying the functional equation
(6) and

‖fa(x)−A(x)‖Y ≤ L1−i

1− L
ψ(x) (107)

for all x ∈ X.

Proof. By Theorem 4.2, A(x) is a unique additive derivation mapping which satisfies (6) for all x ∈ X. It follows
form (105) and (103),
∥∥∥A(x0x1 · · ·x2nx2n+1)−A(x0)(x1 · · ·x2nx2n+1)− · · · − (x0x1 · · ·x2n)A(x2n+1)

∥∥∥
Y

=
1

κ
(2n+1)m
i

∥∥∥f(κk
i x0κ

k
i x1 · · ·κk

i x2nκk
i x2n+1)− f(κk

i x0)(κk
i x1 · · ·κk

i x2nκk
i x2n+1)− · · ·

− (κk
i x0κ

k
i x1 · · ·κk

i x2n)f(κk
i x2n+1)

∥∥∥
Y

≤ 1

κ
(2n+1)m
i

ρ(2mx0, 2mx1, · · · , 2mx2n, 2mx2n+1)

→ 0 as m →∞

Thus the mapping A : X → Y is a unique additive derivation mapping satisfying (6).

Corollary 7.2 Let fa : X → Y be a odd mapping and there exists real numbers ρ and s such that

‖Dfa(x0, x1, · · · , x2n, x2n+1)‖Y

≤





(i) ρ,

(ii) ρ





2n+1∑

j=0

||xj ||sX



 , s < 1 or s > 1;

(iiii) ρ





2n+1∏

j=0

||xj ||sX



 , s < 1

(2n+1) or s > 1
(2n+1) ;

(iv) ρ





2n+1∏

j=0

||xj ||sX +





2n+1∑

j=0

||xj ||sX







 , s < 1

(2n+1) or s > 1
(2n+1) ;

(108)
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∥∥∥fa(x0x1 · · ·x2nx2n+1)− fa(x0)(x1 · · ·x2nx2n+1)− · · · − (x0x1 · · ·x2n)fa(x2n+1)
∥∥∥

Y

≤





(i) ρ,

(ii) ρ





2n+1∑

j=0

||xj ||s


 , s < 1 or s > 1;

(iiii) ρ





2n+1∏

j=0

||xj ||s


 , s < 1

(2n+1) or s > 1
(2n+1) ;

(iv) ρ





2n+1∏

j=0

||xj ||s +





2n+1∑

j=0

||xj ||s






 , s < 1

(2n+1) or s > 1
(2n+1) ;

(109)

for all x0, x1, · · · , x2n, x2n+1 ∈ X. Then there exists a unique additive derivation A : X → Y such that

‖fa(x)−A(x)‖Y ≤





(i)
ρ

2n
,

(ii)
(2n + 1)ρ||x||s

n|2− 2s| ,

(iii)
ρ||x||(2n+1)s

n|2− 2(2n+1)s|
(iv)

(2n + 2)ρ||x||(2n+1)s

n|2− 2(2n+1)s|

(110)

for all x ∈ X.

Theorem 7.3 Let fq : X → Y be a even mapping for which there exists a function ζ : X2n+1 → [0,∞) with the
conditions

lim
k→∞

1
κ2k

i

ζ(κk
i x0, κ

k
i x1, · · · , κk

i x2n, κk
i x2n+1) = 0 (111)

lim
k→∞

1
κ2k

i

ρ(κk
i x0, κ

k
i x1, · · · , κk

i x2n, κk
i x2n+1) = 0 (112)

where κi is defined in (56) satisfying the functional inequalities

‖Dfq(x0, x1, · · · , x2n, x2n+1)‖Y ≤ ζ(x0, x1, · · · , x2n, x2n+1) (113)

and
∥∥∥fq(x0x1 · · ·x2nx2n+1)− fq(x0)(x2

1 · · ·x2
2nx2

2n+1)− · · ·

− (x2
0x

2
1 · · ·x2

2n)fq(x2n+1)
∥∥∥

Y
≤ ρ(x0, x1, · · · , x2n, x2n+1) (114)

for all x0, x1, · · · , x2n, x2n+1 ∈ X. If there exists L = L(i) < 1 such that the function

x → ψ(x) = ξ
(x

2

)
,

has the property

ψ(x) = L κ2
i ψ (κix) . (115)

for all x ∈ X. Then there exists a unique quadratic derivation mapping Q : X → Y satisfying the functional
equation (6) and

‖fq(x)−Q(x)‖Y ≤ L1−i

1− L
ψ(x) (116)

for all x ∈ X.
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Proof. By Theorem 4.4, Q(x) is a unique quadratic derivation mapping which satisfies (6) for all x ∈ X. It follows
form (114) and (112),
∥∥∥Q(x0x1 · · ·x2nx2n+1)−Q(x0)(x2

1 · · ·x2
2nx2

2n+1)− · · · − (x2
0x

2
1 · · ·x2

2n)Q(x2n+1)
∥∥∥

Y

=
1

κ
(2n+1)m
i

∥∥∥fq(κ2k
i x0κ

2k
i x1 · · ·κ2k

i x2nκ2k
i x2n+1)− fq(κ2k

i x0)(κ2k
i x2

1 · · ·κ2k
i x2

2nκ2k
i x2

2n+1)− · · ·

− (κ2k
i x2

0κ
2k
i x2

1 · · ·κ2k
i x2

2n)fq(κ2k
i x2n+1)

∥∥∥
Y

≤ 1

κ
(2n+1)m
i

ρ(κ2k
i x0, κ

2k
i x1, · · · , κ2k

i x2n, κ2k
i x2n+1)

→ 0 as m →∞
Thus the mapping Q : X → Y is a unique quadratic derivation mapping satisfying (6).

Corollary 7.4 Let fq : X → Y be a even mapping and there exists real numbers ρ and s such that

‖Dfq(x0, x1, · · · , x2n, x2n+1)‖Y

≤





(i) ρ,

(ii) ρ





2n+1∑

j=0

||xj ||sX



 , s < 2 or s > 2;

(iii) ρ





2n+1∏

j=0

||xj ||sX



 , s < 2

(2n+1) or s > 2
(2n+1) ;

(iv) ρ





2n+1∏

j=0

||xj ||sX +





2n+1∑

j=0

||xj ||sX







 , s < 2

(2n+1) or s > 2
(2n+1) ;

(117)

∥∥∥fq(x0x1 · · ·x2nx2n+1)− fq(x0)(x2
1 · · ·x2

2nx2
2n+1)− · · · − (x2

0x
2
1 · · ·x2

2n)fq(x2n+1)
∥∥∥

Y

≤





(i) ρ,

(ii) ρ





2n+1∑

j=0

||xj ||sX



 , s < 2 or s > 2;

(iii) ρ





2n+1∏

j=0

||xj ||sX



 , s < 2

(2n+1) or s > 2
(2n+1) ;

(iv) ρ





2n+1∏

j=0

||xj ||sX +





2n+1∑

j=0

||xj ||sX







 , s < 2

(2n+1) or s > 2
(2n+1) ;

(118)

for all x0, x1, · · · , x2n, x2n+1 ∈ X. Then there exists a unique quadratic derivation Q : X → Y such that

‖fq(x)−Q(x)‖Y ≤





(i)
ρ

6n
,

(ii)
(2n + 1)ρ||x||s

n|4− 2s| ,

(iii)
ρ||x||(2n+1)s

n|4− 2(2n+1)s|
(iv)

(n + 1)ρ||x||(2n+1)s

n|4− 2(2n+1)s|

(119)

for all x ∈ X.

Theorem 7.5 Let f : X → Y be a mapping for which there exist a function ζ : X2n+1 → [0,∞) with the conditions
(102), (103), (111) and (112) where κi is defined in (56) such that the functional inequality

‖Df(x0, x1, · · · , x2n, x2n+1)‖Y ≤ ζ(x0, x1, · · · , x2n, x2n+1) (120)
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and (105), (114) for all x0, x1, · · · , x2n, x2n+1 ∈ X. If there exists L = L(i) < 1 such that the function

x → ψ(x) = ξ
(x

2

)
,

has the properties (106) and (115) for all x ∈ X. Then there exists a unique additive derivation mapping A : X → Y
and a unique quadratic derivation mapping Q : X → Y satisfying the functional equation (6) and

‖f(x)−A(x)−Q(x)‖Y ≤ L1−i

1− L
(ψ(x) + ψ(−x)) (121)

for all x ∈ X.

Corollary 7.6 Let f : X → Y be a mapping and there exists real numbers ρ and s such that

‖Df(x0, x1, · · · , x2n, x2n+1)‖Y

≤





ρ,

ρ

{
2n+1∑

i=0

||xi||s
}

, s 6= 1, 2;

ρ

{
2n+1∏

i=0

||xi||s
}

, s 6= 1
(2n+1) ,

2
(2n+1) ;

ρ

{
2n+1∏

i=0

||xi||s +

{
2n+1∑

i=0

||xi||s
}}

, 6= 1
(2n+1) ,

2
(2n+1) ;

(122)

and (105), (114) for all x0, x1, · · · , x2n, x2n+1 ∈ X. Then there exists a unique additive derivation function A :
X → Y and a unique quadratic derivation function Q : X → Y such that

‖f(x)−A(x)−Q(x)‖Y

≤





ρ

(
1
2n

+
1
6n

)
,

(2n + 1)ρ||x||s
(

1
n|2− 2s| +

1
n|4− 2s|

)
,

ρ||x||(2n+1)s

(
1

n|2− 2(2n+1)s| +
1

n|4− 2(2n+1)s|
)

,

(2n + 2)ρ||x||(2n+1)s

(
1

n|2− 2(2n+1)s| +
1

n|4− 2(2n+1)s|
)

(123)

for all x ∈ X.
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