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Abstract

In this paper, the authors established the solution in vector space and Intuitionistic Fuzzy stability of n-dimensional
quadratic functional equation

n∑

i=1

f




n∑

j=1

xij


 = (−n2 + 6n− 4)

n∑

i=1

f(xi) + (n− 4)
∑

1≤i<j≤n

f (xi + xj)

where

xij =
{ −xj if i = j,

xj if i 6= j,

and n is a positive integer using direct and fixed point methods.

Keywords: fixed point, generalized Ulam - Hyers stability, Intuitionistic Fuzzy normed space, quadratic functional equation.

1. Introduction

The problem of the stability of functional equations was originally stated by S.M.Ulam [41]. In 1941 D.H. Hyers
[18] proved the stability of the linear functional equation for the case when the groups are Banach spaces. In 1950,
T. Aoki discussed the Hyers-Ulam stability theorem in [2]. His result was further generalized and rediscovered by
Th.M. Rassias [32] in 1978. These stability results are further generalized and excellent results was investigated by
a number of authors [16, 30, 35]. The terminology generalized Ulam - Hyers stability originates from these historical
backgrounds. These terminologies are also applied to the case of other functional equations. For more detailed
definitions of such terminologies, one can refer to [1, 13, 19, 22, 24, 34].
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The quadratic function f(x) = cx2 satisfies the functional equation

f(x + y) + f(x− y) = 2f(x) + 2f(y) (1)

and therefore the equation (1) is called quadratic functional equation.

The Hyers - Ulam stability theorem for the quadratic functional equation (1) was proved by F.Skof [40] for the
functions f : E1 → E2 where E1 is a normed space and E2 be a Banach space. The result of Skof is still true
if the relevant domain E1 is replaced by an Abelian group and it was delt by P.W.Cholewa [11]. S.Czerwik [12]
proved the Hyers-Ulam-Rassias stability of the quadratic functional equation (1). This result further generalized
by Th.M.Rassais [33], C.Borelli, and G.L.Forti [8].

Several other quadratic functional equations were introduced and investigated by I.S. Chang et al., [9], K.W.
Jun and H.M. Kim [20], Pl.Kannappan [23], S.M. Jung [21] and references cited there in.

Recently, M. Arunkumar and S. Karthikeyan [4] introduced and investicated the solution and stability of n-
dimensional additive functional equation

n∑

i=1

f




n∑

j=1

xij


 = (n− 2)

n∑

j=1

f (xj) (2)

in C∗−algebra.
Consider the following quadratic identity

(−x1 + x2 + · · ·+ xn)2 + (x1 − x2 + · · ·+ xn)2 + · · ·+ (x1 + x2 + · · · − xn)2 =
(−n2 + 6n− 4

) (
x2

1 + x2
2 + · · ·+ x2

n

)

+ (n− 4)
[
(x1 + x2)2 + (x1 + x3)2 + · · ·+ (x1 + xn)2 + (x2 + x3)2 + (x2 + x4)2 + · · ·+ · · ·+ (xn−1 + xn)2

]
.

(3)

The above identity can be transformed into the quadratic functional equation

n∑

i=1

f




n∑

j=1

xij


 = (−n2 + 6n− 4)

n∑

i=1

f(xi) + (n− 4)
∑

1≤i<j≤n

f (xi + xj) (4)

where

xij =
{ −xj if i = j,

xj if i 6= j

and n is a positive integer.
In this paper, the authors established the solution and Intuitionistic Fuzzy stability of n-dimensional quadratic

functional equation (4) using direct and fixed point methods.

2. General solution

In this section, the general solution of the functional equation (4) is present.

Theorem 2.1 Let X and Y be real vector spaces. The mapping f : X → Y satisfies the functional equation (1)
for all x, y ∈ X if and only if f : X → Y satisfies the functional equation (4) for all x1, · · · , xn ∈ X .

Proof. Let f : X → Y satisfies the functional equation (4). Replacing (x2, x3, · · · , xn) by (0, 0, · · · , 0) in (4), we get

f(−x1) = f(x1), ∀ x1 ∈ X.

Therefore f is an even function. Setting (x3, x4, · · · , xn) by (0, 0, · · · , 0) in (4), we obtain

f (−x1 + x2) + f (x1 − x2) + (n− 2)f(x1 + x2)

= (−n2 + 6n− 4) [f (x1) + f (x2)] + (n− 4) [f(x1 + x2) + (n− 2)f(x1) + (n− 2)f(x2)] (5)

for all x1, x2 ∈ X. Replacing (x1, x2) by (x, y) in (5) and using evenness of f and rearranging the functions, our
result is desired.
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Conversely, assume that f : X → Y satisfies (1). Setting x = y = 0 in (1), we get f(0) = 0. Let y = 0 in (1),
we obtain f(−x) = f(x) for all x ∈ X. Therefore f is an even function. Replacing y by x and 2x respectively
in (1), we get f(2x) = 22f(x) and f(3x) = 32f(x) for all x ∈ X. In general for any positive integer a, we have
f(ax) = a2f(x) for all x ∈ X.

Multiplying both sides by 2 in equation (1) and using evenness of f , we obtain

f (−x1 + x2) + f (x1 − x2) = 4 [f (x1) + f (x2)]− 2f (x1 + x2) (6)

for all x1, x2 ∈ X. Replacing (x1, x2) by (x1, x2 − x3) in (6), we get,

f(x1 + x2 − x3) + f(x1 − x2 + x3) = 2f(x1) + 2f(x2 − x3) (7)

for all x1, x2, x3 ∈ X. Again replacing (x1, x2) by (x2, x1 − x3) in (6), we arrive

f(x1 + x2 − x3) + f(−x1 + x2 + x3) = 2f(x2) + 2f(x1 − x3) (8)

for all x1, x2, x3 ∈ X. Also, replacing (x1, x2) by (x1 − x2, x3) in (6), we obtain

f(x1 − x2 + x3) + f(−x1 + x2 + x3) = 2f(x1 − x2) + 2f(x3) (9)

for all x1, x2, x3 ∈ X. Adding (7),(8) and (9), we have

f(−x1 + x2 + x3) + f(x1 − x2 + x3) + f(x1 + x2 − x3)

= (−32 + 6 · 3− 4)
3∑

i=1

f(xi) + (3− 4)
∑

1≤i<j≤3

f (xi + xj) (10)

for all x1, x2, x3 ∈ X. Similarly, one can easily verify for four variables that

f(−x1 + x2 + x3 + x4) + f(x1 − x2 + x3 + x4) + f(x1 + x2 − x3 + x4)

+ f(x1 + x2 + x3 − x4) = (−42 + 6 · 4− 4)
4∑

i=1

f(xi) + (4− 4)
∑

1≤i<j≤4

f (xi + xj) (11)

for all x1, x2, x3, x4 ∈ X. Extending this result, for any positive integer n, we arrive (4) for all x1, x2, · · · , xn ∈ X.

3. Preliminaries of intuitionistic fuzzy normed spaces

In this section, using the idea of intuitionistic fuzzy metric spaces introduced by J.H. Park [29] and R. Saadati and
J.H. Park [37, 38], we define the new notion of intuitionistic fuzzy metric spaces with the help of the notion of
continuous t−representable (see [17]).

Lemma 3.1 [14] Consider the set L∗ and the order relation ≤L∗ defined by:

L∗ =
{

(x1, x2) : (x1, x2) ∈ [0, 1]2 and x1 + x2 ≤ 1
}

,

(x1, x2) ≤L∗ (y1, y2) ⇔ x1 ≤ y1, x2 ≥ y2, ∀ (x1, x2) , (y1, y2) ∈ L∗

Then (L∗, ≤L∗) is a complete lattice.

Definition 3.2 [5] An intuitionistic fuzzy set Aζ,η in a universal set U is an object

Aζ,η = {(ζA (u) , ηA (u)) |u ∈ U }
for all u ∈ U, ζA (u) ∈ [0, 1] and ηA (u) ∈ [0, 1] are called the membership degree and the non-membership degree,
respectively, of u in Aζ,η and, furthermore, they satisfy ζA (u) + ηA (u) ≤ 1.

We denote its units by 0L∗ = (0, 1) and 1L∗ = (1, 0). Classically, a triangular norm ∗ = T on [0, 1] is defined as
an increasing, commutative, associative mapping T : [0, 1]2 → [0, 1] satisfying T (1, x) = 1∗x = x for all x ∈ [0, 1]. A
triangular conorm S = ♦ is defined as an increasing, commutative, associative mapping S : [0, 1]2 → [0, 1] satisfying
S (0, x) = 0♦x = x for all x ∈ [0, 1].

Using the lattice (L∗, ≤L∗), these definitions can be straightforwardly extended.
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Definition 3.3 [5] A triangular norm (t−norm) on L∗ is a mapping T : (L∗)2 → L∗ satisfying the following
conditions:

(i) (∀ ∈ L∗) (T (x, 1L∗) = x) (boundary condition);

(ii)
(
∀ (x, y) ∈ (L∗)2

)
(T (x, y) = T (y, x)) (commutativity);

(iii)
(
∀ (x, y, z) ∈ (L∗)3

)
(T (x, T (y, z)) = T (T (x, y) , z)) (associativity);

(iv)
(
∀ (x, x′, y, y′) ∈ (L∗)4

)
(x ≤L∗ x′ and y ≤L∗ y′ ⇒ T (x, y) ≤L∗ T (x′, y′))

(monotonicity).

If (L∗,≤L∗ ,T) is an Abelian topological monoid with unit 1L∗ , then L∗ is said to be a continuous t−norm.

Definition 3.4 [5] A continuous t−norms T on L∗ is said to be continuous t−representable if there exist a con-
tinuous t−norm ∗ and a continuous t−conorm ♦ on [0, 1] such that, for all x = (x1, x2) , y = (y1, y2) ∈ L∗,

T (x, y) = (x1 ∗ y1, x2♦y2) .

For example,

T (a, b) = (a1b1, min {a2 + b2, 1})
and

M (a, b) = (min {a1, b1} , max {a2, b2})
for all a = (a1, a2) , b = (b1, b2) ∈ L∗ are continuous t−representable.

Now, we define a sequence Tn recursively by T1 = T and

Tn
(
x(1), . . . , x(n+1)

)
= T

(
Tn−1

(
x(1), . . . , x(n)

)
, x(n+1)

)
, ∀n ≥ 2, x(i) ∈ L∗.

Definition 3.5 [39] A negator on L∗ is any decreasing mapping N : L∗ → L∗ satisfying N : (0L∗) = 1L∗ and
N (1L∗) = 0L∗ . If N (N (x)) = x for all x ∈ L∗, then N is called an involutive negator. A negator on [0, 1] is a
decreasing mapping N : [0, 1] → [0, 1] satisfying Pµ,ν (0) = 1 and Pµ,ν (1) = 0. Ns denotes the standard negator on
[0, 1] defined by

Ns (x) = 1− x, ∀x ∈ [0, 1] .

Definition 3.6 [39] Let µ and ν be membership and nonmembership degree of an intuitionistic fuzzy set from
X × (0, +∞) to [0, 1] such that µx (t) + νx (t) ≤ 1 for all x ∈ X and all t > 0 . The triple (X, Pµ,ν , T) is said to be
an intuitionistic fuzzy normed space (briefly IFN-space) if X is a vector space, T is a continuous t−representable
and Pµ,ν is a mapping X × (0,+∞) → L∗ satisfying the following conditions: for all x, y ∈ X and t, s > 0,

(IFN1) Pµ,ν (x, 0) = 0L∗ ;

(IFN2) Pµ,ν (x, t) = 1L∗ if and only if x = 0;

(IFN3) Pµ,ν (αx, t) = Pµ,ν

(
x, t

|α|
)

for all α 6= 0;

(IFN4) Pµ,ν (x + y, t + s) ≥L∗ T (Pµ,ν (x, t) , Pµ,ν (y, s)) .

In this case, Pµ,ν is called an intuitionistic fuzzy norm. Here, Pµ,ν (x, t) = (µx (t) , νx (t)) .

Example 3.7 [39] Let (X, ‖ · ‖) be a normed space. Let T (a, b) = (a, b, min (a2 + b2, 1)) for all a = (a1, a2) , b =
(b1, b2) ∈ L∗ and µ, ν be membership and non-membership degree of an intuitionistic fuzzy set defined by

Pµ,v (x, t) = (µx (t) , vx (t)) =
(

t

t + ‖x‖ ,
‖x‖

t + ‖x‖
)

, ∀t ∈ R+.

Then (X, Pµ,ν , T) is an IFN-sapce.
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Definition 3.8 [39] A sequence {xn} in an IFN-space (X, Pµ,ν , T) is called a Cauchy sequence if, for any ε > 0
and t > 0, there exists n0 ∈ N such that

Pµ,ν (xn − xm, t) > L∗ (Ns (ε) , ε) , ∀n, m ≥ n0,

where Ns is the standard negator.

Definition 3.9 [39] The sequence {xn} is said to be convergent to a point x ∈ X (denoted by xn
Pµ,ν−→ x) if

Pµ,ν (xn − x, t) → 1L∗ as n →∞ for every t > 0.

Definition 3.10 [39] An IFN-space (X, Pµ,ν , T) is said to be complete if every Cauchy sequence in X is convergent
to a point x ∈ X.

Zhou [42] proved a stability property of the functional equation

f(x + y) + f(x− y) = 2f(x)

to prove a conjecture of Z.Ditzian about the relationship between the smoothness of a mapping and the degree of
its approximation by associated Bernstein polynomials. Very recently, S. Shakeri [39] investigate the stability of
Jensen type mapping of the form

f(x + y)− f(x− y) = 2f(y)

in the setting of intuitionistic fuzzy normed spaces.

4. Stability results: direct method

In this section, authors present the generalized Ulam-Hyers stability of the functional equation (4) in intuitionistic
fuzzy normed spaces using direct method.

Now use the following notation for a given mapping f : X → Y

Df(x1, · · · , xn) =
n∑

i=1

f




n∑

j=1

xij


− (−n2 + 6n− 4)

n∑

i=1

f(xi)− (n− 4)
∑

1≤i<j≤n

f (xi + xj)

where

xij =
{ −xj if i = j,

xj if i 6= j,

and n is a positive integer and for all x1, · · · , xn ∈ X.

Theorem 4.1 Let β ∈ {−1, 1}. Let X be a linear space,
(
Z, P′µ,ν , T

)
be an IFN-space, α : Xn → Z be a mapping

with 0 <

(
d

22

)β

< 1,

P′µ,ν

(
α

(
2βx, 2βx, 0, . . . , 0

)
, r

) ≥L∗ P′µ,ν

(
dβα (x, x, 0, . . . , 0) , r

)
(12)

for all x ∈ X and all r > 0, and

lim
n→∞

P′µ,ν

(
α

(
2βnx1, . . . , 2βnxn

)
, 2β2nr

)
= 1L∗ (13)

for all x1, . . . , xn ∈ X and all r > 0.
(
Y, P′µ,ν , T

)
be an IFN-space. Suppose that a function f : X → Y satisfies the

inequality

Pµ,ν (Df(x1, . . . , xn), r) ≥L∗ P′µ,ν (α(x1, . . . , xn), r) (14)

for all r > 0 and all x1, . . . , xn ∈ X. Then the limit

Pµ,ν

(
Q(x)− f(2βnx)

2β2n

)
→ 1L∗ , as n →∞, r > 0 (15)

exists for all x ∈ X and the mapping Q : X → Y is a unique quadratic mapping satisfying (4) and

Pµ,ν (f(x)−Q(x), r) ≥L∗ P′µ,ν

(
α(x, x, 0, . . . , 0), 2r|22 − d|) (16)

for all x ∈ X and all r > 0.
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Proof. First assume β = 1. Replacing (x1, x2, x3, . . . , xn) by (x, x, 0, . . . , 0) in (14), we get

Pµ,ν

(
2f(2x)− 23f(x), r

) ≥L∗ P′µ,ν (α(x, x, 0, . . . , 0), r) (17)

for all x ∈ X and all r > 0. Replacing x by 2nx in (17)and using (IFN3), we obtain

Pµ,ν

(
f(2n+1x)

22
− f(2nx),

r

23

)
≥L∗ P′µ,ν (α(2nx, 2nx, 0, . . . , 0), r) (18)

for all x ∈ X and all r > 0. Using (12), (IFN3) in (18), we arrive

Pµ,ν

(
f(2n+1x)

22
− f(2nx),

r

23

)
≥L∗ P′µ,ν

(
α(x, x, 0, . . . , 0),

r

dn

)
(19)

for all x ∈ X and all r > 0. It is easy to verify from (19), that

Pµ,ν

(
f(2n+1x)
22(n+1)

− f(2nx)
22n

,
r

23 · 22n

)
≥L∗ P′µ,ν

(
α(x, x, 0, . . . , 0),

r

dn

)
(20)

holds for all x ∈ X and all r > 0. Replacing r by dnr in (20), we get

Pµ,ν

(
f(2n+1x)
22(n+1)

− f(2nx)
22n

,
dn r

23 · 22n

)
≥L∗ P′µ,ν (α(x, x, 0, . . . , 0), r) (21)

for all x ∈ X and all r > 0. It is easy to see that

f(2nx)
22n

− f(x) =
n−1∑

i=0

f(2i+1x)
22(i+1)

− f(2ix)
22i

(22)

for all x ∈ X. From equations (21) and (22), we have

Pµ,ν

(
f(2nx)

22n
− f(x),

n−1∑

i=0

di r

22 · 22i

)
≥L∗ Tn−1

i=0

{
P′µ,ν

(
f(2i+1x)
22(i+1)

− f(2ix)
22i

,
di r

23 · 22i

)}

≥L∗ Tn−1
i=0

{
P′µ,ν (α(x, x, 0, . . . , 0), r)

}

≥L∗ P′µ,ν (α(x, x, 0, . . . , 0), r) (23)

for all x ∈ X and all r > 0. Replacing x by 2mx in (23) and using (12), we obtain

Pµ,ν

(
f(2n+mx)
22(n+m)

− f(2mx)
22m

,

n−1∑

i=0

di r

23 · 22(i+m)

)
≥L∗ P′µ,ν

(
α(x, x, 0, . . . , 0),

r

dm

)
(24)

for all x ∈ X and all r > 0 and all m,n ≥ 0. Replacing r by dmr in (24), we get

Pµ,ν

(
f(2n+mx)
22(n+m)

− f(2mx)
22m

,

m+n−1∑

i=m

di r

23 · 22i

)
≥L∗ P′µ,ν (α(x, x, 0, . . . , 0), r) (25)

for all x ∈ X and all r > 0 and all m,n ≥ 0. Using (IFN3) in (25), we obtain

Pµ,ν

(
f(2n+mx)
22(n+m)

− f(2mx)
22m

, r

)
≥L∗ P′µ,ν

(
α(x, x, 0, . . . , 0),

r∑m+n−1
i=m

di

23·22i

)
(26)

for all x ∈ X and all r > 0 and all m,n ≥ 0. Since 0 < d < 22 and

n∑

i=0

(
d

22

)i

< ∞.

Thus {
f(2nx)

22n

}
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is a Cauchy sequence in (Y, Pµ,ν,, T). Since (Y, Pµ,ν , T) is a complete IFN-space, this sequence converges to some
point Q(x) ∈ Y . So one can define the mapping Q : X → Y by

Pµ,ν

(
Q(x)− f(2βnx)

2β2n

)
→ 1L∗ , as n →∞, r > 0

for all x ∈ X. Letting m = 0 in (26), we get

Pµ,ν

(
f(2nx)

22n
− f(x), r

)
≥L∗ P′µ,ν

(
α(x, x, 0, . . . , 0),

r∑n−1
i=0

di

23·22i

)
(27)

for all x ∈ X and all r > 0. Letting n →∞ in (27), we arrive

Pµ,ν (f(x)−Q(x), r) ≥L∗ P′µ,ν

(
α(x, x, 0, . . . , 0), 2r(22 − d)

)

for all x ∈ X and all r > 0. To prove Q satisfies the (4), replacing (x1, . . . , xn) by (2nx1, . . . , 2nxn) in (14),
respectively , we obtain

Pµ,ν

(
1

22n
Df(2nx1, . . . , 2nxn), r

)
≥L∗ P′µ,ν

(
α(2nx1, . . . , 2nxn), 22nr

)
(28)

for all r > 0 and all x1, . . . , xn ∈ X. Now,

Pµ,ν




n∑

i=1

Q




n∑

j=1

xij


− (−n2 + 6n− 4)

n∑

i=1

Q(xi)− (n− 4)
∑

1≤i<j≤n

Q (xi + xj) , r




≥L∗ T



Pµ,ν




n∑

i=1

Q




n∑

j=1

xij


− 1

22n

n∑

i=1

f




n∑

j=1

2nxij


 ,

r

4


 ,

Pµ,ν

(
−(−n2 + 6n− 4)

n∑

i=1

Q(xi) +
1

22n
(−n2 + 6n− 4)

n∑

i=1

f(2nxi),
r

4

)
,

Pµ,ν


−(n− 4)

∑

1≤i<j≤n

Q (xi + xj) +
1

22n
(n− 4)

∑

1≤i<j≤n

f (2n(xi + xj)) ,
r

4


 ,

Pµ,ν


 1

22n

n∑

i=1

f




n∑

j=1

2nxij


− 1

22n
(−n2 + 6n− 4)

n∑

i=1

f(2nxi)

− 1
22n

(n− 4)
∑

1≤i<j≤n

f (2n(xi + xj)) ,
r

4






 (29)

for all x1, . . . , xn ∈ X and all r > 0. Using (28) in (29), we arrive

Pµ,ν




n∑

i=1

Q




n∑

j=1

xij


− (−n2 + 6n− 4)

n∑

i=1

Q(xi)− (n− 4)
∑

1≤i<j≤n

Q (xi + xj) , r




≥L∗ T
{
1L∗ , 1L∗ , 1L∗ ,P

′
µ,ν

(
α(2nx1, . . . , 2nxn), 22nr

)}

≥L∗ P′µ,ν

(
α(2nx1, . . . , 2nxn), 22nr

)
(30)

for all x1, . . . , xn ∈ X and all r > 0. Letting n →∞ in (30) and using (13), we see that

Pµ,ν




n∑

i=1

Q




n∑

j=1

xij


− (−n2 + 6n− 4)

n∑

i=1

Q(xi)− (n− 4)
∑

1≤i<j≤n

Q (xi + xj) , r


 = 1L∗

for all x1, . . . , xn ∈ X and all r > 0. Using (IFN2) in the above inequality, it gives

n∑

i=1

Q




n∑

j=1

xij


 = (−n2 + 6n− 4)

n∑

i=1

Q(xi) + (n− 4)
∑

1≤i<j≤n

Q (xi + xj)
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for all x1, . . . , xn ∈ X. Hence Q satisfies the quadratic functional equation (4). In order to prove Q(x) is unique,
we let Q′(x) be another quadratic functional equation satisfying (4) and (16). Hence,

Pµ,ν (Q(x)−Q′(x), r) = Pµ,ν

(
Q(2nx)

22n
− Q′(2nx)

22n
, r

)

≥L∗ T
{

Pµ,ν

(
Q(2nx)

22n
− f(2nx)

22n
,
r

2

)
, Pµ,ν

(
f(2nx)

22n
− Q′(2nx)

22n
,
r

2

) }

≥L∗ P′µ,ν

(
α(2nx, 2nx, 0, . . . , 0),

2r 22n(22 − d)
2

)

≥L∗ P′µ,ν

(
α(x, x, 0, . . . , 0),

r 22n(22 − d)
dn

)

for all x ∈ X and all r > 0. Since

lim
n→∞

r 22n(22 − d)
dn

= ∞,

we obtain

lim
n→∞

P′µ,ν

(
α(x, x, 0, . . . , 0),

r 22n(22 − d)
dn

)
= 1L∗ .

Thus
Pµ,ν(Q(x)−Q′(x), r) = 1L∗

for all x ∈ X and all r > 0, hence Q(x) = Q′(x). Therefore Q(x) is unique.
For β = −1, we can prove the result by a similar method. This completes the proof of the theorem.
From Theorem (4.1), we obtain the following corollaries concerning the Hyers-Ulam-Rassias and JMRassias

stabilities for the functional equation (4).

Corollary 4.2 Suppose that a function f : X → Y satisfies the inequality

Pµ,ν (D f(x1, x2, x3, · · · , xn), r) ≥L∗





P′µ,ν

(
ε

n∑
i=1

||xi||s, r
)

,

P′µ,ν

(
ε

(
n∏

i=1

||xi||s +
n∑

i=1

||xi||ns

)
, r

)
,

(31)

for all r > 0 and all x1, . . . , xn ∈ X, where ε, s are constants with ε > 0. Then there exists a unique quadratic
mapping Q : X → Y such that

Pµ,ν (f(x)−Q(x), r) ≥L∗

{
P′µ,ν

(
ε||x||s, 2r|22 − 2s|) , s 6= 2

P′µ,ν

(
ε||x||2s, 2r|22 − 2ns|) , s 6= 2

n

(32)

for all x ∈ X and all r > 0.

If we define

ϕ(x1, . . . , xn) =





ε
n∑

i=1

||xi||s,

ε

{
n∏

i=1

||xi||s +
(

ε
n∑

i=1

||xi||ns

)}

then the corollary is followed from Theorem 4.1, by

d =
{

2s,
2ns.

5. Stability results: fixed point method

In this section, the authors presented the generalized Ulam - Hyers stability of the functional equation (4) in
intuitionistic Fuzzy normed space using fixed point method.

Now we will recall the fundamental results in fixed point theory.
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Theorem 5.1 (Banach’s contraction principle) Let (X, d) be a complete metric space and consider a mapping
T : X → X which is strictly contractive mapping, that is

(A1) d(Tx, Ty) ≤ Ld(x, y) for some (Lipschitz constant) L < 1. Then,
(i) The mapping T has one and only fixed point x∗ = T (x∗);
(ii)The fixed point for each given element x∗ is globally attractive, that is

(A2) limn→∞Tnx = x∗, for any starting point x ∈ X;
(iii) One has the following estimation inequalities:

(A3) d(Tnx, x∗) ≤ 1
1−L d(Tnx, Tn+1x),∀ n ≥ 0, ∀ x ∈ X;

(A4) d(x, x∗) ≤ 1
1−L d(x, x∗), ∀ x ∈ X.

Theorem 5.2 [27](The alternative of fixed point) Suppose that for a complete generalized metric space (X, d) and
a strictly contractive mapping T : X → X with Lipschitz constant L. Then, for each given element x ∈ X, either
(B1) d(Tnx, Tn+1x) = ∞ ∀ n ≥ 0,
or
(B2) there exists a natural number n0 such that:
(i) d(Tnx, Tn+1x) < ∞ for all n ≥ n0 ;
(ii)The sequence (Tnx) is convergent to a fixed point y∗ of T
(iii) y∗ is the unique fixed point of T in the set Y = {y ∈ X : d(Tn0x, y) < ∞};
(iv) d(y∗, y) ≤ 1

1−L d(y, Ty) for all y ∈ Y.

For to prove the stability result we define the following:
δi is a constant such that

δi =
{

2 if i = 0,
1
2 if i = 1

and Ω is the set such that
Ω = {g | g : X → Y, g(0) = 0} .

Theorem 5.3 Let f : X → Y be a mapping for which there exist a function α : Xn → Z with the condition

lim
k→∞

P′µ,ν

(
α

(
δk
i x1, δ

k
i x2, · · · , δk

i xn

)
, δ2k

i r
)

= 1L∗ ∀ x1, x2, · · · , xn ∈ X, r > 0 (33)

and satisfying the functional inequality

Pµ,ν (D f(x1, x2, · · · , xn), r) ≥L∗ P′µ,ν (α(x1, x2, · · · , xn), r) ∀ x1, x2, · · · , xn ∈ X, r > 0. (34)

If there exists L = L(i) such that the function

x → β(x) =
1
2
α

(x

2
,
x

2
, 0, · · · , 0

)
,

has the property

P′µ,ν

(
L

1
δ2
i

β(δix), r
)

= P′µ,ν (β(x), r) , ∀ x ∈ X, r > 0. (35)

Then there exists unique quadratic function Q : X → Y satisfying the functional equation (4) and

Pµ,ν (f(x)−Q(x), r) ≥L∗ P′µ,ν

(
β(x),

L1−i

1− L
r

)
, ∀ x ∈ X, r > 0. (36)

Proof.Let d be a general metric on Ω, such that

d(g, h) = inf
{
K ∈ (0,∞)|Pµ,ν (g(x)− h(x), r) ≥L∗ P′µ,ν (β(x),Kr) , x ∈ X, r > 0

}
.
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It is easy to see that (Ω, d) is complete. Define T : Ω → Ω by Tg(x) =
1
δ2
i

g(δix), for all x ∈ X. For g, h ∈ Ω, we

have d(g, h) ≤ K

⇒ Pµ,ν (g(x)− h(x), r) ≥L∗ P′µ,ν (β(x),Kr)

⇒ Pµ,ν

(
g(δix)

δ2
i

− h(δix)
δ2
i

, r

)
≥L∗ P′µ,ν

(
β(δix),Kδ2

i r
)

⇒ Pµ,ν (Tg(x)− Th(x), r) ≥L∗ P′µ,ν (β(x),KLr)

⇒ d (Tg(x), Th(x)) ≤ KL

⇒ d (Tg, Th) ≤ Ld(g, h) (37)

for all g, h ∈ Ω. There fore T is strictly contractive mapping on Ω with Lipschitz constant L. Replacing (x1, x2, x3, · · · , xn)
by (x, x, 0, · · · , 0) in (34), we get

Pµ,ν

(
2f(2x)− 23f(x), r

) ≥L∗ P′µ,ν (α(x, x, 0, · · · , 0), r) . (38)

for all x ∈ X, r > 0. Using (IFN2) in (38), we arrive

Pµ,ν

(
f(2x)

22
− f(x), r

)
≥L∗ P′µ,ν

(
α(x, x, 0, · · · , 0), 23r

)
(39)

for all x ∈ X, r > 0 with the help of (35) when i = 0, it follows from (39), we get

⇒ Pµ,ν

(
f(2x)

22
− f(x), r

)
≥L∗ P′µ,ν (β(x), Lr)

⇒ d(Tf, f) ≤ L = L1 = L1−i (40)

Replacing x by x
2 in (38), we obtain

Pµ,ν

(
f(x)− 22f

(x

2

)
, r

)
≥L∗ P′µ,ν

(
α

(x

2
,
x

2
, 0, · · · , 0

)
, 2r

)
(41)

for all x ∈ X, r > 0 with the help of (35) when i = 1, it follows from (41) we get

⇒ Pµ,ν

(
f(x)− 22f

(x

2

)
, r

)
≥L∗ P′µ,ν (β(x), r)

⇒ d(f, Tf) ≤ 1 = L0 = L1−i (42)

Then from (40) and (42) we can conclude,

d(f, Tf) ≤ L1−i < ∞
Now from the fixed point alternative in both cases, it follows that there exists a fixed point Q of T in Ω such that

lim
n→∞

Pµ,ν

(
f (δn

i x)
δn
i

−Q(x), r
)
→ 1L∗ , ∀x ∈ X, r > 0. (43)

Replacing (x1, x2, · · · , xn) by (δix1, δix2, · · · , δixn) in (34), we arrive

Pµ,ν

(
1

δ2n
i

Df(δix1, δix2, · · · , δixn), r
)
≥L∗ P′µ,ν

(
α(δix1, δix2, · · · , δixn), δ2n

i r
)

(44)

for all r > 0 and all x1, x2, · · · , xn ∈ X By proceeding the same procedure as in the Theorem 4.1, we can prove the
function, Q : X → Y satisfies the functional equation (4).

By fixed point alternative, since Q is unique fixed point of T in the set

∆ = {f ∈ Ω|d(f, Q) < ∞} ,

therefore Q is a uniqe function such that

Pµ,ν (f(x)−Q(x), r) ≥L∗ P′µ,ν (β(x),Kr) (45)
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for all x ∈ X, r > 0 and K > 0. Again using the fixed point alternative, we obtain

d(f, Q) ≤ 1
1− L

d(f, Tf)

⇒ d(f, Q) ≤ L1−i

1− L

⇒ Pµ,ν (f(x)−Q(x), r) ≥L∗ P′µ,ν

(
β(x),

L1−i

1− L
r

)
, (46)

firall x ∈ X and r > 0. This completes the proof of the theorem.
From Theorem 5.3, we obtain the following corollary concerning the stability for the functional equation (4).

Corollary 5.4 Suppose that a function f : X → Y satisfies the inequality

Pµ,ν (D f(x1, x2, · · · , xn), r) ≥





P′µ,ν

(
ε

n∑
i=1

||xi||s, r
)

,

P′µ,ν

(
ε

(
n∏

i=1

||xi||s +
n∑

i=1

||xi||ns

)
, r

)
,

(47)

for all x1, x2, · · · , xn ∈ X and r > 0, where ε, s are constants with ε > 0. Then there exists a unique quadratic
mapping Q : X → Y such that

Pµ,ν (f(x)−Q(x), r) ≥L∗





P′µ,ν

(
ε||x||s, 2s+2

|22−2s|r
)

, s < 2 or s > 2;

P′µ,ν

(
ε||x||ns, 2ns+2

|22−2ns|r
)

, s < 2
n or s > 2

n ;
(48)

for all x ∈ X and all r > 0.

Proof. Setting

α(x1, x2, · · · , xn) =





ε

n∑

i=1

||xi||s,

ε

(
n∏

i=1

||xi||s +
n∑

i=1

||xi||ns

)

for all x1, x2, · · · , xn ∈ X. Then,

P′µ,ν

(
α(δk

i x1, δ
k
i x2, · · · , δk

i xn), δ2k
i r

)

=





P′µ,ν

(
ε

n∑

i=1

||x||s, (δ2−s
i )kr

)

P′µ,ν

(
ε

(
n∏

i=1

||xi||s +
n∑

i=1

||xi||ns

)
,
(
δ2−ns
i

)k
r

)

=
{ → 1L∗ as k →∞ for s < 2 if i = 0 and s > 2 if i = 1,
→ 1L∗ as k →∞ for s < 2

n if i = 0 and s > 2
n if i = 1.

Thus, (33) is holds. But we have β(x) = 1
2α

(
x
2 , x

2 , 0, · · · , 0
)

has the property

P′µ,ν

(
L

1
δ2
i

β(δix), r
)
≥L∗ P′µ,ν (β(x), r) ∀ x ∈ X, r > 0.

Hence

P′µ,ν (β(x), r) = P′µ,ν

(
1
2
α

(x

2
,
x

2
, 0, · · · , 0

)
, r

)
=





P′µ,ν

( ε

2s
||x||s, r

)
,

P′µ,ν

( ε

2ns
||x||ns, r

)
.



32 International Journal of Advanced Mathematical Sciences

Now,

P′µ,ν

(
1
δ2
i

β(δix), r
)

=





P′µ,ν

(
ε

δ2
i

(
1
2s

)
||δix||s, r

)
,

P′µ,ν

(
ε

δ2
i

(
1

2ns

)
||δix||ns, r

) =
{

P′µ,ν

(
β(x), δ2−s

i r
)
,

P′µ,ν

(
β(x), δ2−ns

i r
)
.

Hence the inequality (35) holds either, L = 22−s for s > 2 if i = 0 and L = 2s−2 for s < 2 if i = 1 also L = 22−ns

for s > 2
n if i = 0 and L = 2ns−2 for s < 2

n if i = 1.
Now from (36), we prove the following cases for conditions (i) and (ii).
Case:1 L = 22−s for s > 2 if i = 0

Pµ,ν (f(x)−Q(x), r) ≥L∗= P′µ,ν

(
ε

(
1
2s

)
||x||s, 22−s

1− 22−s
r

)
= P′µ,ν

(
ε||x||s, 2s+2

2s − 22
r

)
.

Case:2 L = 2s−2 for s < 2 if i = 1

Pµ,ν (f(x)−Q(x), r) ≥L∗= P′µ,ν

(
ε

(
1
2s

)
||x||s, 1

1− 2s−2
r

)
= P′µ,ν

(
ε||x||s, 2s+2

22 − 2s
r

)
.

Case:3 L = 22−ns for s > 2
n if i = 0

Pµ,ν (f(x)−Q(x), r) ≥L∗= P′µ,ν

(
ε

(
1

2ns

)
||x||ns,

22−ns

1− 22−ns
r

)
= P′µ,ν

(
ε||x||ns,

2ns+2

2ns − 22
r

)
.

Case:4 L = 2ns−2 for s < 2
n if i = 1

Pµ,ν (f(x)−Q(x), r) ≥L∗= P′µ,ν

(
ε

(
1

2ns

)
||x||ns,

1
1− 2ns−2

r

)
= P′µ,ν

(
ε||x||ns,

2ns+2

22 − 24s
r

)
.

Hence the proof is complete.
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