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Abstract

In this paper we introduce a new class of multifunction called Upper(lower) g?bp-continuous multifunction, Up-
per(lower) almost g?bp-continuous multifunction, Upper(lower) weakly g?bp-continuous multifunction and Up-
per(lower) contrag?bp-continuous multifunction in topological spaces,and study some of their basic properties and
relations among them.
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1. Introduction

Many mathematicians and they devote a great part of their research work on the study of generalised continuous
multifunction. In 1999, Mahmoud introduced the concept of pre-irresolute multi-valued function while in 1996 Popa
and Noiri and in 2001 Abd-El-Monsef and Nasef introduced other types of multifunctions.
Throughout this paper (X, τ) and (Y, σ) (or simply X and Y ) represents the non-empty topological spaces on which
no separation axiom are assumed, unless otherwise mentioned. For a subset A of X, Cl(A) and Int(A) represents
the closure of A and Interior of A respectively. A subset A is said to be preopen [17] (resp., α-open [19], semi
open [12], regular open [25]) set if A ⊆ IntCl(A) (resp., A ⊆ IntClInt(A), A ⊆ ClInt(A), A = IntCl(A)). The
complement of a preopen set is called preclosed.

2. Preliminaries

We recall the following definition.

Definition 2.1 A subset A of a topological space (X, τ) is called

1. b-open set [3], if A ⊆ Cl(Int(A)) ∪ Int(Cl(A)) and b-closed set if Cl(Int(A)) ∪ Int(Cl(A)) ⊆ A.

2. generalized closed set ( briefly g-closed) [11] (g?-closed [23]), if Cl(A) ⊆ U whenever A ⊆ U and U is
open(g-open) in X.

3. gb-closed [20], and (g?b-closed [24]) if bCl(A) ⊆ U whenever A ⊆ U and U is open(g-open) in X.

4. pδ-open set [9], if for each x ∈ A, there exists a preopen set U in X such that x ∈ U ⊆ pIntpCl(U) ⊆ A.

5. regular preopen(resp., regular preclosed) set [6], if A = pIntpCl(A)(resp. A = pClpInt(A)).



International Journal of Advanced Mathematical Sciences 9

Definition 2.2 [4] A space X is said to be

1. Pre-T0 if and only if to each pair of distinct points x, y in X, there exists a preopen set containing one of the
points but not the other.

2. Pre-T1 if and only if to each pair of distinct points x, y of X, there exists a pair of preopen sets one containing
x but not y and other containing y but not x.

3. Pre-T2 if and only if to each pair of distinct points x, y of X, there exists a pair of disjoint preopen sets one
containing x and the other containing y.

Definition 2.3 A topological space (X, τ) is said to be:

1. g?b-T0 if for each pair of distinct points x, y in X, there exists a g?b-open set U such that either x ∈ U and
y /∈ U or x /∈ U and y ∈ U .

2. g?b-T1 if for each pair of distinct points x, y in X, there exist two g?b-open sets U and V such that x ∈ U but
y /∈ U and y ∈ V but x /∈ V .

3. g?b-T2 if for each distinct points x, y in X, there exist two disjoint g?b-open sets U and V containing x and
y respectively.

4. g?b-T 1
2

if every g?b-closed set is g-closed.

5. g?b-space if every g?b-open set of X is open in X.

Definition 2.4 A topological space (X, τ) is said to be:

1. submaximal [7], if the closure of every open set of X is X.

2. extremally disconnected [15], if the closure of every open set of X is open in X.

3. pre-T 1
2

[16], space if every pg-closed set is preclosed.

4. r-T1 [8], if for each pair of distinct points x and y of X, there exists regular open sets U and V containing x
and y respectively, such that y /∈ U and x /∈ V .

Theorem 2.5 [7] A space X is submaximal if and only if every preopen set is open.

Theorem 2.6 [2] Let (Y, τY ) be subspace of a space (X, τ). If A ∈ PO(X, τ) and A ⊆ Y , then A ∈ PO(Y, τY ).

Theorem 2.7 [25] Let A be a subset of a topological space (X, τ), if A ∈ τ , then Clθ(A) = Cl(A).

Theorem 2.8 [24] Let A ⊆ Y ⊆ X and suppose that A is g?b-closed in X, then A is g?b-closed relative to Y .

Definition 2.9 [14] A multifunction F : X → Y is said to be;

1. Upper pre-irresolute at x ∈ X if for each preopen set A of Y containing F (x) (F (x) ∩ V 6= φ) , there exists a
preopen set U of X containing x such that F (U) ⊆ A.

2. Lower pre-irresolute at x ∈ X if for each preopen set A of Y such that F (x) ∩ A 6= φ, there exists a preopen
set U of X containing x such that F (u) ∩A 6= φ for every u ∈ U .

3. Upper (Lower) pre-irresolute if it has this property at each point of X.

Definition 2.10 [1] For a multifunction F : X → Y , we shall denote the upper and lower inverse of a set A of Y
by F+(A) and F−(A), respectively, that is, F+(A) = {x ∈ X : F (x) ⊆ A} and F−(A) = {x ∈ X : F (x) ∩A 6= φ}.

Definition 2.11 A multifunction F : X → Y is said to be;

1. Upper α-continuous [21] at x ∈ X if for each open set V of Y containing F (x), there exists U ∈ α(X, x) such
that F (U) ⊆ V .

2. Lower α-continuous [21] at x ∈ X if for each open set A of Y such that F (x)∩A 6= φ, there exists U ∈ α(X,x)
such that F (u) ∩A 6= φ for every u ∈ U .
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3. Upper (Lower) α-continuous [18] if it has this property at each point of X.

Definition 2.12 [22] A multifunction F : X → Y is said to be;

1. Upper almost α-continuous at x ∈ X if for each open set V of Y containing F (x), there exists U ∈ α(X,x)
such that F (U) ⊆ IntCl(V ).

2. Lower almost α-continuous at x ∈ X if for each open set V of Y such that F (x) ∩ A 6= φ, there exists
U ∈ α(X, x) such that F (u) ∩ IntCl(V ) 6= φ for every u ∈ U .

3. Upper (Lower) almost α-continuous if it has this property at each point of X.

Definition 2.13 [13] A multifunction F : X → Y is said to be;

1. Upper δ-continuous at x ∈ X if for each regular open set V of Y containing F (x), there exists a regular open
set U of X such that F (U) ⊆ V .

2. Lower δ-continuous at x ∈ X if for each regular open set V of Y such that F (x)∩A 6= φ, there exists a regular
open set U of X such that F (u) ∩ V 6= φ for every u ∈ U .

Definition 2.14 [1] A multifunction F : X → Y is said to be;

1. Upper b-continuous at x ∈ X if for each open set V of Y containing F (x), there exists a b-open set U of X
such that F (U) ⊆ V .

2. Lower b-continuous at x ∈ X if for each open set V of Y such that F (x)∩A 6= φ, there exists a b-open set U
of X such that F (u) ∩ V 6= φ for every u ∈ U .

3. Upper and lower g?bp-continuous multifunction

In this section, we Introduce the concept of upper and lower g?bp-continuous multifunctions in topological spaces.

Definition 3.1 A multifunction F : X → Y is said to be:

1. Upper g?bp-continuous (U.g?bp.c.) at x ∈ X if for each preopen set A of Y containing F (x), there exists a
g?b-open set U of X containing x such that F (U) ⊆ A.

2. Lower g?bp-continuous (L.g?bp.c.) at x ∈ X if for each preopen set A of Y such that F (x) ∩ A 6= φ, there
exists a g?b-open set U of X containing x such that F (u) ∩A 6= φ for every u ∈ U .

3. Upper (Lower) g?bp-continuous if it has this property at each point of X.

Proposition 3.2 Let X and Y be topological spaces. For a multifunction F : X → Y , the following statements are
equivalents:

1. F is U.g?bp.c. (L.g?bp.c.),

2. For every preopen set A, F+(A)(F−(A)) is a g?b-open set in X,

3. For every preclosed set K, F−(K)(F+(K)) is a g?b-closed set in X.

proof. (1) ⇒ (2). If A is preopen set of Y , then for each x ∈ F+(A), F (x) ⊆ A. By(1) there exists a g?b-open set
U of x such that F (U) ⊆ A which implies that x ∈ U ⊆ F+(A), therefore F+(A) is g?b-open in X.
(2) ⇒ (3). Let K be preclosed set of Y . Then Y \ K is preopen set of Y . By(2), F+(Y \ K) = X \ F−(k) is
g?b-open set in X and hence F−(K) is g?b-closed in X.
(3) ⇒ (1). Let A be any preopen set of Y . Then (Y \ A) is preclosed in Y . By(3), F−(Y \ A) is g?b-closed set in
X. But F−(Y \ A) = X \ F+(A). Thus X \ F+(A) is g?b-closed in X so F+(A) is g?b-open in X. Therefore, we
obtain F (F+(A)) ⊆ A, hence F is g?bp-continuous.
The proof for the case where F is L.g?bp.c. is similarly proved.

Theorem 3.3 If a multifunction F : (X, τ) → (Y, σ) is upper b-continuous and Y is submaximal, then F is upper
g?bp-continuous.
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proof. Let A be preopen set in Y , since Y is submaximal then A is open set in Y . Since F is upper b-continuous,
then F+(A) is b-open in X and by Theorem(3.4) [24], it is g?b-open in X. Hence F is upper g?bp-continuous.

Proposition 3.4 Let X = R1 ∪ R2, where R1 and R2 are g?b-closed set in X. Let F : R1 → Y and G : R2 → Y
be upper g?bp-continuous. If F (x) = G(x) for each x ∈ R1 ∩R2. Then H : R1 ∪R2 → Y such that

H(x) =
{

F (x) if x ∈ R1

G(x) if x ∈ R2

is upper g?bp-continuous.

proof. Let A be any preopen set in Y . Clearly H+(A) = F+(A) ∪ G+(A). Since F is upper g?bp-continuous,
then F+(A) is g?b-open in R1. But R1 is g?b-open in X. Then by Theorem (3.30) [24], F+(A) is g?b-open in X.
Similarly, G+(A) is g?b-open in R2 and hence a g?b-open in X. Since a union of two g?b-open sets is g?b-open.
Therefore, H+(A) = F+(A) ∪G+(A) is g?b-open in X. Hence H is upper g?bp-continuous.

Theorem 3.5 For a multifunction F : (X, τ) → (Y, σ) the following are equivalent.

1. F is upper g?bp-continuous.

2. F (g?bCl(B)) ⊆ pCl(F (B)), for every subset B of X,

3. g?bCl(F+(A)) ⊆ F+(pCl(A)), for each subset A of Y ,

4. F−(pInt(A)) ⊆ g?bInt(F−(A)), for each subset A of Y ,

5. pInt(F (B)) ⊆ F (g?bInt(B)), for each subset B of X.

proof. (1) ⇒ (2). Let B be any subset of X .Then F (B) ⊆ pCl(F (B)) and pClF (B) is preclosed in Y . Hence
B ⊆ F+(pClF (B)), since F is g?bp-continuous. By Proposition 3.2, F+(pClF (B)) is g?b-closed set in X. Therefore,
g?bCl(B) ⊆ F+(pCl(F (B))). Hence F (g?bCl(B)) ⊆ (pCl(F (B))).
(2) ⇒ (3). Let A be any subset of Y , then F+(A) is a subset of X. By (2) we have F (g?bClF+(A)) ⊆
pCl(F (F+(A))) = pCl(A). It follow that g?b(ClF+(A)) ⊆ F+(pCl(A)).
(3) ⇒ (4). Let A be any subset of Y . Then apply(3) to (Y \A) we obtain g?bCl(F+(Y \A)) ⊆ F+(pCl(Y \A)) ⇔
g?bCl(X \F−(A)) ⊆ F+(Y \pInt(A)) ⇔ X \g?bInt(F−(A)) ⊆ X \F−(pInt(A)) ⇔ F−(pInt(A) ⊆ g?bInt(F−(A)).
(4) ⇒ (5). Let B be any subset of X, Then F (B) is a subset of Y . By(4), we have F−(pInt(f(A))) ⊆
g?bInt(F−(F (A))) = g?bInt(A). Therefore, pInt(F (A)) ⊆ F (g?bInt(A)).
(5) ⇒ (1). let x ∈ X and let A be any preopen set of Y containing F (x). Then x ∈ F+(A) and F+(A) is a
subset of X. By(5), we have pInt(F (F+(A))) ⊆ F (g?bInt(F+(A))). Then pInt(A) ⊆ F (g?bInt(F+(A))), since A
is preopen, then A ⊆ F (g?bInt(F+(A))) implies that F+(A) ⊆ g?bInt(F+(A)). Therefore F+(A) is g?b-open in X
containing x and clearly F (F+(A)) ⊆ A. Hence F is upper g?bp-continuous.

Proposition 3.6 Let F : X → Y be upper g?bp-continuous and Y ⊆ Z. If Y is preclosed subset of a topological
space Z then F : X → Z is upper g?bp-continuous.

proof. Let K be any preclosed set in Z. Then K ∩ Y is preclosed in Z, by Theorem(2.22) [2], it is preclosed
in Y . Since F is upper g?bp-continuous F+(K ∩ Y ) is g?b-closed in X but F (x) ∈ Y for each x ∈ X, and thus
F+(K) = F+(K∩Y ) is g?b-closed subset of X. Therefore, by Proposition 3.2 F : X → Z is upper g?bp-continuous.

Theorem 3.7 If F : X → Y is upper g?bp-continuous and A is g?b-closed set in X then F |A : A → Y is upper
g?bp-continuous.

proof. Let B be preclosed set in Y , since F is upper g?bp-continuous, then F+(B) is g?b-closed in X. If F+(B)∩A =
A1 then A1 is g?b-closed in X, since intersection of two g?b-closed is g?b-closed. Since (F |A)+(B) = A1 by Theorem
2.8, A1 is g?b-closed set in A. Therefore F |A is upper g?bp-continuous.

Theorem 3.8 If F : X → Y and G : Y → Z be any two multifunctions, then G ◦ F : X → Z is upper g?bp-
continuous if G is preirresolute multifunction and F is upper g?bp-continuous.

proof. Let A be any preclosed set in Z. Since G is preirresolute multifunction then G+(A) is preclosed in Y , since
F is upper g?bp-continuous then F+(G+(A)) is g?b-closed in X. Hence G ◦ F is upper g?bp-continuous.
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Theorem 3.9 If F : X → Y is a upper g?bp-continuous injection and Y is pre-T1, then X is g?b-T1.

proof. Assume that Y is pre-T1. For any distinct points x and y in X, there exists preopen set A and W such that
F (x) ∈ A, F (y) /∈ A, F (x) /∈ W and F (y) ∈ W . Since F is upper g?bp-continuous, so there exists a g?b-open sets
G and H such that x ∈ G, y ∈ H, F (G) ⊆ A and F (H) ⊆ W . Thus we obtain y /∈ G, x /∈ H. this show that X is
g?b-T1.

Theorem 3.10 If F : X → Y is upper g?bp-continuous injection and Y is pre-T2 then X is g?b-T2.

proof. For any pair of distinct points x and y in X, there exists disjoint preopen sets U and V in Y such that
F (x) ∈ U and F (y) ∈ V . Since F is upper g?bp-continuous, there exists g?b-open sets G and H in X containing x
and y, respectively, such that F (G) ⊆ U and F (H) ⊆ V . Since U and V are disjoint, we have U ∩ V = φ, hence
G ∩H = φ. This shows that X is g?b-T2.

Theorem 3.11 An upper g?bp-continuous image of a g?b-connected space is g?b-connected for a multifunction F .

proof. Let F : X → Y be an upper g?bp-continuous multifunction from a g?b-connected space X onto a space Y .
Suppose Y is not connected and let Y = A∪B be a partition of Y . Then both A and B are preopen and preclosed
subset of Y . Since F is upper g?bp-continuous, F+(A) and F+(B) are g?b-open subset of X. In view of the fact
that F+(A) and F+(B) are disjoint, X = F+(A)∪F+(B) is a partition of X. This is contrary to the connectedness
of X.

Definition 3.12 A multifunction F : X → Y is said to be;

1. Upper almost g?bp-continuous at a point x ∈ X if for each preopen set A of Y such that F (x) ∈ A, there
exists a g?b-open set U containing x such that F (U) ⊆ IntCl(A).

2. Lower almost g?bp-continuous at a point x ∈ X if for each preopen set A of Y such that F (x) ∈ A, there
exists a g?b-open set U of X containing X such that F (U) ∩ IntCl(A) 6= φ.

3. Upper (Lower) almost g?bp-continuous if it has this property at each point of X.

Theorem 3.13 A multifunction F : X → Y is upper almost g?bp-continuous if and only if for each x ∈ X and
each regular open set A containing F (x), there exists a g?b-open set U in X containing x such that F (U) ⊆ A.

proof. For every x ∈ X and let A be any regular open set containing F (x), then A is preopen set containing
F (x). Since F is upper almost g?bp-continuous, then there exists a g?b-open set U in X containing x such that
F (U) ⊆ IntCl(A) = A. Conversely. Assume that for all regular open set A containing F (x), there exists a g?b-
open set U in X containing x with F (U) ⊆ A = IntCl(A) then A is preopen set and hence F is upper almost
g?bp-continuous.

Theorem 3.14 For a multifunction F : X → Y , the following statements are equivalent:

1. F upper almost g?bp-continuous,

2. F+(IntCl(A)) is g?b-open set in X, for each preopen set A in Y ,

3. F−(ClInt(B)) is g?b-closed set in X, for each preclosed set B in Y ,

4. F−(B) is g?b-closed set in X, for each regular closed set B in Y ,

5. F+(A) is g?b-open set in X , for each regular open set A in Y .

proof. (1) ⇒ (2). Let A be any preopen set in Y . We have to show that F+(IntCl(A)) is g?b-open set in X.
Let x ∈ F+(IntCl(A)). Then F (x) ∈ IntCl(A) and IntCl(A) is regular open set in Y . Since F is upper almost
g?bp-continuous. By Theorem 3.13, there exists a g?b-open set U of X containing x such that F (U) ⊆ IntCl(A).
Which implies that x ∈ U ⊆ F+(IntCl(A)). Therefore, F+(IntCl(A)) is g?b-open set in X.
(2) ⇒ (3). Let B be any preclosed set of Y . Then Y \B is preopen set of Y . By (2), F+(IntCl(Y \B)) is g?b-open
set in X and F+(IntCl(Y \B)) = F+(Int(Y \ Int(B))) = F+(Y \ClInt(B)) = X \F−(ClInt(B)) is g?b-open set
in X and hence F−(ClInt(B)) is g?b-closed set in X.
(3) ⇒ (4). Let B be any regular closed set of Y . Then B is preclosed set of Y . By (3). F−(ClInt(B)) is g?b-closed
set in X since B is regular closed set, then F−(ClInt(B)) = F−(B). Therefore F−(B) is g?b-closed set in X.
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(4) ⇒ (5). Let A be any regular open set of Y . Then Y \ A is regular closed set of Y ,and by (4) we have
F−(Y \A) = X \ F+(A) is g?b-closed set in X and hence F+(A) is g?b-open set in X.
(5) ⇒ (1). Let x ∈ X and let A be any regular open set of Y containing F (x). Then x ∈ F+(A). By (5) we have
F+(A) is g?b-open set in X. Therefore we obtain F (F+(A)) ⊆ A. Hence by Theorem 3.13, F is upper almost
g?bp-continuous.

Theorem 3.15 If a multifunction F : X → Y is upper g?bp-continuous, then it is upper almost g?bp-continuous
but not conversely.

proof. Let A be any regular open set in Y , so is preopen in Y . Since F is upper g?bp-continuous then F+(A) is
g?b-open in X. Hence by Theorem 3.14, F is upper almost g?bp-continuous.

Remark 3.16 The converse of the theorem need not be true in general.

Example 3.17 Consider X = Y = {a, b, c} with the topology τ={φ, {c}, {a, c}, {b, c}, X} ,σ = {φ, {a}, Y } and
with the identity multifunction F : (X, τ) → (Y, σ), F is upper almost g?bp-continuous but not upper g?bp-continuous
since for preclosed set B = {b, c} in Y F+(B) = {b, c} is not g?b-closed in X.

Theorem 3.18 If a multifunction F : X → Y is upper almost α-continuous then F is upper almost g?bp-
continuous.

proof. Let A be any regular open set in Y . Since F is upper almost α-continuous then F+(A) is semi open set in
X, hence by Theorem(3.10)[24], is g?b-open in X. Therefore, F is upper almost g?bp-continuous.

Theorem 3.19 If a multifunction F : X → Y is upper δ-continuous, then F is upper almost g?bp-continuous.

proof. Let x ∈ X and let A be any preopen set in Y , then A ⊆ IntCl(A). Since F is upper δ-continuous, there
exists an regular open set U of X containing x such that F (U) ⊆ IntCl(IntCl(A)), then F (U) ⊆ IntCl(A). Since
U is regular open set, then it is preopen and by Theorem(3.12) [24], U is g?b-open set of X. Therefore, F is upper
almost g?bp-continuous.

Theorem 3.20 If F : X → Y is upper almost g?bp-continuous function, then we have F−1(A) ⊆ g?bInt(F+(IntCl(A)))
for every preopen set A in Y .

proof. Let A be any preopen set in Y , then A ⊆ IntCl(A). Since IntCl(A) is regular open set in Y , and Since
F is upper almost g?bp-continuous multifunction, so by Theorem 3.14, F+(intCl(A)) is g?b-open set in X. So
F+(A) ⊆ F+(intCl(A)) = g?bInt(F+(IntCl(A))).

Corollary 3.21 If F : X → Y is lower almost g?bp-continuous function, then we have g?bCl(F−(ClInt(E))) ⊆
F−(E), for every preclosed set E in Y .

proof. Let E be any preclosed set in Y , so Y \E is preopen. By Theorem 3.20, F+(Y \E) ⊆ g?bInt(F+(IntCl(Y \
E))) this implies that X \ F−(E) ⊆ g?bInt(F+(Y \ ClInt(E))), then X \ F−(E) ⊆ g?bInt(X \ F−(ClInt(E))), it
follow that X \ F−(E) ⊆ X \ g?bCl(F−(ClInt(E))). Hence g?bCl(F−(ClInt(E))) ⊆ F−(E).

Theorem 3.22 Let F : X → Y be an upper almost g?bp-continuous. If Y is preopen set in Z, then F : X → Z is
upper almost g?bp-continuous.

proof. Let A be any regular open set of Z. Since Y is preopen, then A∩Y is regular open set in Y [see [10]]. Since
F is upper almost g?bp-continuous then F+(A ∩ Y ) is g?b-open set in X. But F (x) ∈ Y for each x ∈ X. Thus
F+(A) = F+(A ∩ Y ) is a g?b-open set in X. Therefore F is upper almost g?bp-continuous.

Theorem 3.23 If F : X → Y is an upper almost g?bp-continuous multifunction and A is g?b-closed set of X, then
the restriction function F |A : A → Y is almost g?bp-continuous multifunction.

proof. Let B be any regular closed set of Y . Since F is upper almost g?bp-continuous multifunction, then by
Theorem 3.14, F+(B) is g?b-closed set in X, and (F |A)+(B) = A∩F+(B). Since A is g?b-closed, so A∩F+(B) is
g?b-closed set in A (see Theorem 2.8). Hence F |A is upper almost g?bp-continuous multifunction.
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Theorem 3.24 If F : X → Y is an upper almost g?bp-continuous injection and Y is r-T1, then X is g?b− T1.

proof. Assume that Y is r-T1. For any distinct points x and y in X, there exists regular open set A and W such
that F (x) ∈ A, F (y) /∈ A, F (x) /∈ W and F (y) ∈ W . Since F is upper almost g?bp-continuous there exists a
g?b-open sets G and H such that x ∈ G, y ∈ H, F (G) ⊆ A and F (H) ⊆ W . Thus we obtain y /∈ G, x /∈ H. this
show that X is g?b− T1.

Theorem 3.25 If F : X → Y is upper almost g?bp-continuous and Y is pre-T2 then X is g?b− T2.

proof. For any pair of distinct points x and y in X, there exists disjoint preopen sets U and V in Y such that
F (x) ∈ U and F (y) ∈ V . Since F is upper almost g?bp-continuous, there exists g?b-open sets G and H in X
containing x and y, respectively, such that F (G) ⊆ IntCl(U) and F (H) ⊆ IntCl(V ). Since U and V are disjoint,
we have IntCl(U) ∩ IntCl(V ) = φ, hence G ∩H = φ. This shows that X is g?b− T2.

4. Weakly g?bp-continuous multifunction

Definition 4.1 A multifunction F : X → Y is said to be:

1. Upper weakly g?bp-continuous at a point x ∈ X if for each preopen set A of Y such that F (x) ∈ A, there
exists a g?b-open set U containing x such that F (U) ⊆ Cl(A).

2. Lower weakly g?bp-continuous at a point x ∈ X if for each preopen set A of Y such that F (x) ∈ A, there
exists a g?b-open set U of X containing X such that F (U) ∩ Cl(A) 6= φ.

3. Upper (Lower) almost g?bp-continuous if it has this property at each point of X.

Theorem 4.2 Let F : X → Y be a multifunction. If F+(ClA) is g?b-open set in X for each preopen set A in Y ,
then F is upper weakly g?bp-continuous.

proof. Let x ∈ X and let A be any preopen set of Y containing F (x). Then x ∈ F+(A) ⊆ F+(ClA). By hypothesis,
we have F+(ClA) is g?b-open set in X containing x. Therefore, we obtain F (F+(ClA)) ⊆ ClA. Hence F is upper
weakly g?bp-continuous.

It is obvious that upper almost g?bp-continuous implies upper weakly g?bp-continuous. However, the converse
is not true in general as it shown in the following example.

Example 4.3 Consider X = Y = {a, b, c, d} with the topology τ = σ = {φ, {b}, {c}, {a, b}, {b, c}, {a, b, c}, X}, with
identity multifunction F : (X, τ) → (Y, σ) F is upper weakly g?bp-continuous but not upper almost g?b-continuous
since for a preopen set B = {a, b} in Y F+(IntClB) = {a, b} which is not g?b-open in X.

Theorem 4.4 If F : X → Y is upper weakly g?bp-continuous multifunction and Y is almost p-regular, then F is
upper almost g?bp-continuous.

proof. Let x ∈ X and let A be preopen set of Y . By the almost p-regularity of Y there exists a regular open set G
of Y such that F (x) ∈ G ⊆ Cl(G) ⊆ IntCl(A). Since F is upper weakly g?bp-continuous, there exists a g?b-open
set U in X such that F (U) ⊆ Cl(G) ⊆ IntCl(A). Therefore F is almost g?bp-continuous.

Theorem 4.5 Let F : X → Y be a multifunction. If for each x ∈ X and each regular closed set R of Y containing
F (x), there exists a g?b-open set U in X containing x such that F (U) ⊆ R, then F is upper weakly g?bp-continuous.

proof. Let x ∈ X and let A be any preopen set of Y containing F (x). Then put R = Cl(A) which is a regular closed
set of Y containing F (x). By hypothesis, there exists a g?b-open set U in X containing x such that F (U) ⊆ R.
Hence F is upper weakly g?bp-continuous.

Theorem 4.6 Let F : X → Y be a multifunction. If the inverse image of each regular closed set of Y is a g?b-open
set in X, then F is upper weakly g?bp-continuous.

proof. Let A be any preopen set of Y . Then Cl(A) is a regular closed set in Y . By hypothesis, we have F+(Cl(A))
is a g?b-open set in X. Therefore, by Theorem 4.2, F is upper weakly g?bp-continuous.

Corollary 4.7 Let F : X → Y be a multifunction. If the inverse image of each regular open set of Y is a g?b-closed
set in X, then F is upper weakly g?bp-continuous.
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Corollary 4.8 Let F : X → Y be a multifunction. If F+(IntF ) is g?b-closed set in X for each preclosed set F in
Y , then F is upper weakly g?bp-continuous.

Theorem 4.9 Let F : X → Y be upper weakly g?bp-continuous multifunction, if A is g?b-closed subset of X, then
the restriction F |A : A → Y is upper weakly g?bp-continuous in the subspace A.

proof. Let x ∈ A and let B be a preclosed set of Y containing F (x). Since F is upper weakly g?bp-continuous,by
Corollary 4.8, F+(IntB) is g?b-closed set in X, and (F |A)+(IntB) = A∩F+(IntB) is g?b-closed in X, by Theorem
(3.30)[24], it is g?b-closed in A. Hence F |A is upper weakly g?bp-continuous.

Theorem 4.10 Let F : X → Y be upper weakly g?bp-continuous multifunction and for each x ∈ X. If Y is any
subset of Z containing F (x), then F : X → Z is upper weakly g?bp-continuous.

proof. Let x ∈ X and A be any preopen set of Z containing F (x). Then A ∩ Y is preopen in Y containing F (x).
Since f : X → Y is upper weakly g?bp-continuous, there exists a g?b-open set U of X containing x such that
F (U) ⊆ Cl(A ∩ Y ) and hence F (U) ⊆ ClA. Therefore, F : X → Z is upper weakly g?bp-continuous.

Theorem 4.11 For a function f : (X, τ) → (Y, σ), the following statements are equivalent:

1. F is upper weakly g?bp-continuous,

2. g?bClF+(IntpClB) ⊆ F+(pClB), for each B ⊆ Y ,

3. F−(pIntB) ⊆ g?bIntF−(ClpIntB), for each B ⊆ Y ,

4. F−(pIntpClA) ⊆ g?bIntF−(ClA), for each preopen set A of Y ,

5. F−(A) ⊆ g?bIntF−(ClA), for each regular preopen set A of Y ,

6. g?bClF+(IntF ) ⊆ F+(F ), for each regular preclosed set F of Y ,

7. g?bClF+(IntF ) ⊆ F+(ClIntF ), for each preclosed set F of Y ,

8. g?bClF+(A) ⊆ F+(ClA), for each preopen set A of Y ,

9. F−(IntF ) ⊆ g?bIntF−(F ), for each preclosed set F of Y .

proof. (1) ⇒ (2). Let B be any subset of Y . Assume that x /∈ F+(pClB). Then F (x) /∈ pClB and there exists
a preopen set A containing F (x) such that A ∩ B = φ, hence A ∩ IntpClB = φ, then A ⊆ Y \ (IntpClB) and
ClA ∩ IntpClB = φ. Hence, by(1), there exists a g?b-open set U of X containing x such that F (U) ⊆ ClA.
Therefore, we have f(U) ∩ IntpClB = φ which implies U ∩ F+(IntpClB) = φ and hence x /∈ g?bClF+(IntpClB).
Therefore, we obtain g?bClF+(IntpClB) ⊆ F+(pClB).
(2) ⇒ (3). Let B be any subset of Y . Then apply(2) to Y \B we obtain g?bClF+(IntpCl(Y \B)) ⊆ F+(pCl(Y \
B)) ⇒ g?bClF+(Int(Y \ pIntB)) ⊆ F+(Y \ pIntB) ⇒ g?bClF+(Y \ ClpIntB) ⊆ F+(Y \ pIntB) ⇒ g?bCl(X \
F−(ClpIntB) ⊆ X\F−(pIntB) ⇒ X\g?bInt(F−(ClpIntB)) ⊆ X\F−(pIntB) ⇒ F−(pIntB) ⊆ g?bInt(F−(ClpIntB)).
Therefore, we obtain F−(pIntB) ⊆ g?bInt(F−(ClpIntB)).
(3) ⇒ (4). Let A be any preopen set of Y . Then apply(3) to pClA we obtain F−(pIntpClA) ⊆ g?bInt(F−(ClpIntpClA)) ⊆
g?bInt(F−(ClIntClA)) = g?bIntF−(ClA). Therefore we obtain F−(pIntpClA) ⊆ g?bIntF−(ClA).
(4) ⇒ (5). Let A be any regular preopen set of Y . Then A is preopen set of Y . By(4) we have F−(A) =
F−(pIntpClA) ⊆ g?bIntF−(ClA). Therefore we obtain F−(A) ⊆ g?bIntF−(ClA).
(5) ⇒ (6). Let F be any regular preclosed set of Y . Then Y \ F is a regular preopen set of Y . By(5), we have
F−(Y \F ) ⊆ g?bIntF−(Cl(Y \F )) ⇒ X \F+(F ) ⊆ g?bIntF−(Y \IntF ) ⇒ X \F+(F ) ⊆ g?bInt(X \F+(IntF )) ⇒
X \ F+(F ) ⊆ X \ g?bClF+(IntF ) ⇒ g?bClF+(IntF ) ⊆ F+(F ). Hence g?bClF+(IntF ) ⊆ F+(F ).
(6) ⇒ (7). Let F be any preclosed set of Y . Then pClpIntF is regular preclosed set of Y . By(6) we have
g?bClF+(IntpClpIntF ) = g?bClF+(IntF ) ⊆ F+(pClpIntF ). Therefore we obtain g?bClF+(IntF ) ⊆ F+(pClpIntF ).
(7) ⇒ (8). Let A be any preopen set of Y . Then by(7), we have g?bClF+(A) ⊆ g?bClF+(IntClA) ⊆ F+(pClpIntClA) ⊆
F+(ClIntClA) = F+(ClA). Therefore,g?bClF+(A) ⊆ F+(ClA).
(8) ⇒ (9). Let F be any preclosed set of Y . Then Y \ F is preopen set of Y . By(8), we have g?bClF+(Y \ F ) ⊆
F+(Cl(Y \ F )) ⇒ g?bCl(X \ F−(F ) ⊆ F−(Y \ IntF ) ⇒ X \ g?bIntF−(F ) ⊆ X \ F−(IntF ) ⇒ F−(IntF ) ⊆
g?bIntF−(F ). Therefore, F−(IntF ) ⊆ g?bIntF−(F ).
(9) ⇒ (1). Let x ∈ X and let A be any preopen set in Y containing F (x). Then x ∈ F−(A) and ClA is a
closed set, hence preclosed, in Y . By (9), we have x ∈ F−(A) ⊆ F−(IntClA) ⊆ g?bIntF−(ClA). If we put
U = g?bIntF−(ClA), then we obtain that x ∈ U and F (U) ⊆ ClA. Therefore,, F is weakly g?bp-continuous.
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Theorem 4.12 The followings are equivalent for a function f : X → Y .

1. F is upper weakly g?bp-continuous,

2. F (g?bCl(A)) ⊆ Clθ(F (A)) for each subset A of X,

3. g?bCl(F+(B)) ⊆ F+(Clθ(B)) for each subset B of Y ,

4. g?bCl(F+(Int(Clθ(B)))) ⊆ F+(Clθ(B)) for every subset B of Y .

proof. (1) ⇒ (2). Let A be any subset of X. Suppose that F (g?bCl(A)) 6⊆ Clθ(F (A)). Then there exists
y ∈ F (g?bCl(A)) such that y /∈ Clθ(F (A)), so there exists an open set G in Y containing y such that ClG∩F (A) = φ.
If F+(y) = φ, then there is nothing to prove. Suppose that x be any arbitrary point of F+(y), so F (x) ∈ G. Since G
is open then it is preopen in Y and by(1), there exists a g?b-open set U of X containing x such that F (U) ⊆ Cl(G).
Therefore, we have F (U)∩F (A) = φ, so x /∈ g?bCl(A). Hence y /∈ F (g?bCl(A)) which is a contradiction. Therefore,
F (g?bCl(A)) ⊆ Clθ(F (A)).
(2) ⇒ (3). Let B be any subset of Y . Set A = F+(B) in (2), then we have f(g?bCl(F+(B))) ⊆ Clθ(B) and
g?bCl(F+(B)) ⊆ F+(Clθ(B)).
(3) ⇒ (4). Let B be any subset of Y . Since Clθ(B) is closed in Y hence is preclosed in Y . We have g?bCl(F+(Int(Clθ(B)))) ⊆
F+(Clθ(Int(Clθ(B)))) ⊆ F+(Cl(Int(Clθ(B)))) ⊆ F+(Clθ(B)).
(4) ⇒ (1). Let G be any preopen set of Y , then G ⊆ IntCl(G). Apply(4) to IntCl(G), we get g?bClF+(IntClθ(IntCl(G))) ⊆
F+(Clθ(IntCl(G))). By Theorem 2.7, we have g?bClF+(IntCl(G)) ⊆ F+(Cl(IntCl(G))). So, we get, g?bCl(F+(G)) ⊆
g?bClF+(IntCl(G)) ⊆ F+(Cl(IntCl(G))) ⊆ F+(ClG). Hence, by Theorem 4.11, F is upper weakly g?bp-
continuous.

Corollary 4.13 If a multifunction F : X → Y is upper weakly g?bp-continuous, then F+(A) is g?b-closed in X
for every θ-closed set A in Y .

proof. If A is θ-closed, so by Theorem 4.12, we obtain that g?bCl(F+(A)) ⊆ F+(ClθA) = F+(A). Therefore,
F+(A) is g?b-closed.

Corollary 4.14 Let F : X → Y be any multifunction. If F+(Clθ(B)) is g?b-closed in X for every subset B of Y ,
then F : X → Y is upper weakly g?bp-continuous .

proof. Since F+(Clθ(B)) is g?b-closed in X, we have g?bCl(F+(B)) ⊆ g?bClF+(Clθ(B)) = F+(Clθ(B)). There-
fore, by Theorem 4.12, f is upper weakly g?bp-continuous.

Theorem 4.15 A multifunction F : X → Y is upper weakly g?bp-continuous if and only if F+(A) ⊆ g?bIntF+(Cl(A))
for each preopen set A in Y .

proof. Necessity. Let F be upper weakly g?bp-continuous and let A be any preopen set of Y , then A ⊆
IntCl(A). Therefore, by Theorem 4.11, we get F+(A) ⊆ F+(IntCl(A)) ⊆ g?bIntF+(Cl(A)). Hence, F+(A) ⊆
g?bIntF+(Cl(A)).
Sufficiency. Let A be any regular preopen set of Y , then A is preopen set in Y . By hypothesis, we have
F+(A) ⊆ g?bIntF+(Cl(A)). Therefore, by Theorem 4.11, f is upper weakly g?bp-continuous.

Corollary 4.16 A multifunction F : X → Y is upper weakly g?bp-continuous if and only if g?bClF+(Int(F )) ⊆
F+(F ) for each preopen set F in Y .

Theorem 4.17 If F : X → Y is a upper weakly g?bp-continuous function and Y is extremally disconnected space,
then F is upper almost g?bp-continuous.

proof. Let x ∈ X and let A be any preopen set of Y containing F (x). Since F is upper weakly g?bp-continuous,
there exists a g?b-open set U of X containing x such that F (U) ⊆ Cl(A). Since Y is extremally disconnected, then
F (U) ⊆ IntCl(A). Therefore, F is upper almost g?bp-continuous.

Theorem 4.18 If F : X → Y is upper weakly g?bp-continuous injection and Y is pre-T1 then X is g?b− T1.

proof. Assume that Y is pre-T1. For any distinct points x and y in X, there exist preopen sets A and W such that
F (x) ∈ A, F (y) /∈ A, F (x) /∈ W and F (y) ∈ W . Since F is upper weakly g?bp-continuous, there exists a g?b-open
sets G and H in X containing x and y respectively, such that F (G) ⊆ Cl(U), F (H) ⊆ Cl(A), F (H) ⊆ Cl(W ) since
A and W are disjoint then Cl(A) and Cl(W ) are disjoint. Thus we obtain y /∈ G, x /∈ H. This show that X is
g?b− T1.
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Theorem 4.19 If F : X → Y is upper weakly g?bp-continuous and Y is pre-T2 then X is g?b− T2.

proof. For any pair of distinct points x and y in X, there exist disjoint preopen sets U and V in Y such that
F (x) ∈ U and F (y) ∈ V . Since F is upper weakly g?bp-continuous, there exist g?b-open sets G and H in X
containing x and y, respectively, such that F (G) ⊆ Cl(U) and F (H) ⊆ Cl(V ). Since U and V are disjoint, we have
Cl(U) ∩ Cl(V ) = φ, hence G ∩H = φ. This shows that X is g?b− T2.

5. Contra g?bp-continuous function

Definition 5.1 A multifunction F : X → Y is called:

1. Upper contra g?bp-continuous at x ∈ X if for each preclosed set A such that x ∈ F+(A), there exists a g?b-
open set U containing x such that U ⊆ F+(A).

2. Lower contra g?bp-continuous at x ∈ X if for each preclosed set A such that x ∈ F−(A), there exists a g?b-
open set U containing x such that U ⊆ F−(A).

3. Lower (upper) contra g?bp-continuous if F has this property at each point of X.

Theorem 5.2 The following are equivalent for a multifunction F : X → Y .

1. F is upper contra g?bp-continuous.

2. F+(A) is g?b-open set for any preclosed set A ⊆ Y .

3. F−(U) is g?b-closed set for any preopen set U ⊆ Y .

4. For each x ∈ X and each preclosed set A containing F (x), there exists a g?b-open set U containing x such
that if y ∈ U , then F (y) ⊆ A.

proof. (1) ⇒ (2). Let A be a preclosed set in Y and x ∈ F+(A). Since F is upper contra g?bp-continuous, there
exists a g?b-open set U containing x such that U ⊆ F+(A). Thus, F+(A) is g?b-open. The converse of the proof is
similar. (2) ⇒ (3). This follows from the fact that F+(Y \ A) = X \ F−(A) for every subset A of Y . (1) ⇔ (4).
Obvious.

Theorem 5.3 The following are equivalent for a multifunction F : X → Y .

1. F is upper contra g?bp-continuous.

2. F−(A) is g?b-open set for any preclosed set A ⊆ Y .

3. F+(U) is g?b-closed set for any preopen set U ⊆ Y .

4. For each x ∈ X and each preclosed set A such that F (x) ∩ A 6= φ, if y ∈ U , then F (y) ⊆ A, there exists a
g?b-open set U containing x such that if y ∈ U , then F (y) ∩A 6= φ

proof. The proof is similar to the proof of Theorem 5.2.

Theorem 5.4 If a multifunction F : X → Y is upper contra g?bp-continuous and Y is preregular, then F is upper
g?bp-continuous.

proof. Let x ∈ X and A is preopen set of Y containing F (x). Since Y is preregular, then there exists a preopen
set G in Y containing F (x) such that pCl(G) ⊆ A. Since F is upper contra g?bp-continuous, then by Theorem 5.2,
there exists a g?b-open set U in X containing x such that F (U) ⊆ pCl(G). Then F (U) ⊆ pCl(G) ⊆ A. Hence F is
upper g?bp-continuous.

Theorem 5.5 If a multifunction F : X → Y is upper contra g?bp-continuous, then F is upper weakly g?bp-
continuous.
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proof. Let A be any preopen set in Y . Since F is upper contra g?bp-continuous, then F+(A) is g?b-closed set of
X. Hence, by Theorem 4.2, we obtain that F is upper weakly g?bp-continuous.

The converse of Theorem 5.5 is not true in general as it is shown in the following example.

Example 5.6 Consider X = Y = {a, b, c} with the topology τ = {φ, {c}, {a, c}, {b, c}, X}, σ = {φ, {b}, {a, b}, Y }
and a multifunction F : (X, τ) → (Y, σ) is defined by F (a) = c, F (b) = b and F (c) = a, F is upper weakly g?bp-
continuous but not upper contra g?bp-continuous since for preopen set B = {a, b} in Y and F−1(B) = {b, c} is not
g?b-closed in X.

Theorem 5.7 If a multifunction F : X → Y is upper contra g?bp-continuous and X is g?b-space, then F is upper
contra continuous.

proof. Let A be an open set in Y , then i is preopen. Since F is upper contra g?bp-continuous, so F+(A) is
g?b-closed in X. Since X is g?b-space, hence, F+(A) is closed in X. Thus F is upper contra continuous.

6. Multifunctions with g?bp-closed graphs

Definition 6.1 Let F : X → Y be any multifunction, the graph of the function F is denoted by G(F ) and is said
to be g?bp-closed if for each (x, y) /∈ G(F ), there exists a g?b-open set U in X containing x, and a preopen set V of
Y containing y such that (U × V ) ∩G(F ) = φ.

Lemma 6.2 The multifunction F : X → Y has a g?bp-closed graph if and only if for each x ∈ X and y ∈ Y
such that y 6= F (x), there exists a g?b-open set U and a preopen set V containing x and y respectively, such that
F (U) ∩ V = φ.

proof. Follows from Definition 6.1.

Proposition 6.3 If F : X → Y is upper weakly g?bp-continuous, and Y is pre-T2 space, then G(F ) is a g?bp-closed
graph.

proof. Suppose that (x, y) /∈ G(F ), then F (x) 6= y. By the fact that Y is pre-T2, there exist preopen sets W and V
such that F (x) ∈ W , y ∈ V and W ∩V = φ. It follow that ClW ∩V = φ. Since F is upper weakly g?bp-continuous,
so by Definition 4.1, there exists a g?b-open set U in X containing x such that F (U) ⊆ ClW . Hence, we have
F (U) ∩ V = φ. This means that G(F ) is g?bp-closed graph.

Theorem 6.4 Let F : X → Y be a preirresolute multifunction where X is an arbitrary topological space and Y is
pre-T2. Then G(f) is g?bp-closed.

proof. Let (x, y) /∈ G(F ). Then F (x) 6= y. Since Y is pre-T2, there exists U ∈ PO(Y, F (x)), V ∈ PO(Y, y) such
that U ∩ V = φ. Since F is upper preirresolute, this implies that F+(U) = W ∈ PO(X, x), so W ∈ g?bO(X, x).
Hence F (W ) = F (F+(U)) ⊆ U . It follow from above that F (W )∩V = φ. Therefore, by the Lemma 6.2, we obtain
that G(F ) is g?bp-closed.

Definition 6.5 The graph G(F ) of a multifunction F : X → Y is called contra g?bp-closed if for each (x, y) /∈ G(F ),
there exist U ∈ g?bO(X,x), V∈PC(Y, y) such that (U × V ) ∩G(F ) = φ.

Lemma 6.6 The graph G(F ) of a multifunction F : X → Y is contra g?bp-closed if and only if for each (x, y) /∈
G(F ), there exist U ∈ g?bO(X, x), V∈PC(Y, y) such that F (U) ∩ V = φ.

Theorem 6.7 If a multifunction F : X → Y is upper contra g?bp-continuous and Y is pre-Urysohn, then G(F ) is
contra g?bp-closed.

proof. Let (x, y) /∈ G(F ). Then y 6= F (x) and there exists preopen sets H1,H2 such that F (x) ∈ H1, y ∈ H2 and
pCl(H1) ∩ pCl(H2) = φ. From hypothesis, there exists V ∈ g?bO(X,x) such that F (V ) ⊆ pCl(H1). Therefore, we
obtain F (V ) ∩ pCl(H2) = φ. This shows that G(F ) is contra g?bp-closed..

Theorem 6.8 If a multifunction F : X → Y is upper g?bp-continuous and Y is pre-T1, then G(F ) is upper contra
g?bp-closed.
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proof. Let (x, y) /∈ G(F ). Then y 6= F (x) and there exists preopen set H of Y such that F (x) ∈ H and y /∈ H.
Since F is upper g?bp-continuous , there exists g?b-open set U in X containing x such that F (U) ⊆ H. Therefore
we obtain F (U) ∩ (Y −H) = φ and (Y −H) ∈ PC(Y, y). This show that G(F ) is contra g?bp-closed.

Theorem 6.9 Let F : X → Y be a multifunction and G : X → X × Y the graph function of F , defined by
G(x) = (x, F (x)) for every x ∈ X. If G is upper contra g?bp-continuous, then F is upper contra g?bp-continuous.

proof. Let U be any preopen set in Y , then X×U is preopen set in X×Y . Since G is upper contra g?bp-continuous.
It follows that F+(U) = G+(X × U) is an g?b-closed in X. Thus F is upper contra g?bp-continuous.

Definition 6.10 Let X and Y be topological spaces. A multifunction F : X → Y is said to have strongly g?bp-closed
graph if for each (x, y) /∈ G(F ), there exists U ∈ g?bO(X,x), V ∈ PO(Y, y) such that (U × Cl(V )) ∩G(F ) = φ.

Lemma 6.11 A multifunction F : X → Y has strongly g?bp-closed graph if for each (x, y) /∈ G(F ), there exists
U ∈ g?bO(X, x), V ∈ PO(Y, y) such that F (U) ∩ Cl(V ) = φ.

Remark 6.12 Evidently every multifunction has a strongly g?bp-closed graph it has a g?bp-closed graph but the
converse is not true as it is shown by the following example.

Example 6.13 Let X = Y = {a, b} and τ = {φ, {a}, X}, σ = {φ, {b}, Y }, then the identity multifunction I :
(X, τ) → (Y, σ) has a g?bp-closed graph but it has not strongly g?bp-closed graph.

Theorem 6.14 If F : X → Y is upper almost g?bp-continuous and Y is pre-T2, then G(F ) is strongly g?bp-closed
graph.

proof. Let (x, y) /∈ G(F ). Since Y is pre-T2, then there exists preopen set V of Y containing y such that
F (x) /∈ Cl(V ). Now Cl(V ) is regular closed set in Y . So, Y − Cl(V ) is regular open in Y containing F (x).
Therefore, by the upper almost g?bp-continuous of F there exists U ∈ g?bO(X,x) such that F (U) ⊆ Y − Cl(V ).
Hence F (U) ∩ Cl(V ) = φ.

Corollary 6.15 If F : X → Y is upper g?bp-continuous and Y is pre-T2 then G(F ) is strongly g?bp-closed.

proof. Since upper g?bp-continuous implies upper almost g?bp-continuous, the result follows.
References
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