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Abstract

Various sequences of polynomials by the names of Fibonacci and Lucas polynomials occur in the literature over a
century. The Fibonacci polynomials and Lucas polynomials are famous for possessing wonderful and amazing
properties and identities. In this paper, Generalized Fibonacci-Lucas Polynomials are introduced and defined by the

recurrence relation b, (x)= xb,, (x)+b , (x),n>2 with b,(x)=2b and b,(x)=s . Some basic identities of
Generalized Fibonacci-Lucas Polynomials are obtained by method of generating function.
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1. Introduction

Various sequences of polynomials by the names of Fibonacci and Lucas polynomials occur in the literature over a
century. The Fibonacci polynomials and Lucas polynomials are closely related and widely investigated. Fibonacci
polynomials appear in different frameworks. These polynomials are of great importance in the study of many subjects
such as algebra, geometry, combinatorics, approximation theory, statistics and number theory itself. Moreover these
polynomials have been applied in every branch of mathematics. Fibonacci polynomials are special cases of Chebyshev
polynomials and have been studied on a more advanced level by many mathematicians.

Basin, S. L. [1] show that Q matrix generates a set of Fibonacci Polynomials satisfying the recurrence relation

foa(X)= xf (x)+f  (x),n=2withf(x)= 0, f,(x)= 1. (1.1)

The Lucas Polynomials are defined by the recurrence formula

La(x)= X1, (x)+1, (x),n>2 withly(x)= 2, 1,(x)= x. 1.2)

Generating function of Fibonacci polynomials is

i ()t =t(1-xt 7). (1.3)

n=0

Generating function of Lucas polynomials is

iln(x)t” =(2-xt)(1-xt—t?) . (1.4)

n=0

Explicit sum formula for (1.1) is given by

f (x)—[nf L (15)
El K ‘ '

where (m) is binomial coefficient and [x] is the greatest integer less than or equal to x.
Explicit sum formula for (1.10.3) is given by
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[n/2]

-k
I“(X):Z ik [nk )X”Zkl (L6)

where ( ) is binomial coefficient and [x] is defined as the greatest integer less than or equal to x.

The Fibonacci and Lucas polynomials possess many fascinating properties which have been studied in [2] to [14].
In this paper, Generalized Fibonacci-Lucas polynomials introduced and some basic identities are obtained by method of
generating function.

2. Generalized Fibonacci-Lucas Polynomials

Generalized Fibonacci-Lucas Polynomials are defined by recurrence relation:
b, (x)= xb,,(x)+b _, (x),n>2 with initial conditions b, (x)=2bandb,(x)=s, (2.1)

where b and s are integers.
The first few generalized Fibonacci-Lucas Polynomials are as follows:

by(x )= 2b,

b,(x)=s,

b,(x )= sx+2b.

b,(x )= sx*+2bx+s and so on.

If x=1, then b, (1) is generalized Fibonacci-Lucas sequence B, .
Generating function of Generalized Fibonacci-Lucas Polynomials is

a 2b(1—xt)+st
b,(X)t" = ——— . 2.2
; n(x) (l—Xt—tz) ( )
Now, we present hyper geometric form of generating function
ibn(x)t” =[2b(1—xt) +st](1-xt —t?) " =[2b(L—xt) + st ][1—(x+t)t]"
n=0
=[20(1-xt) +st]2(x +t)'t" =[2b (1-xt) +st:|2t ( jx"m.tm
=[20(1-xt) +st]20mz;)ml — m) x 1M g men
Z Z n +m ! n m+n
=[2b(1- xt)+st]§n§(m'n')x t?
~ = (xt) & (n+m)
=[20(1- xt)+st]§ — mz;} oy 1?
t2)"
=[2b(1-xt)+st]e* > (n+m)!.( )
~= nl m!
. )n+m+1( )m
=[20(1-xt)+st e > 70ﬁ. —
i ey Wa )
=[20(1-xt)+st Je rrZ‘B(nﬂ)m O mi
:[2b(1—xt)+st:|e*‘zFl[n+1:Ll,t2J,
ibn(x)tn =[2b(1-xt)+st]e’ ,F[n+1:11t"]. (2.3)
Relation between generalized Fibonacci-Lucas Polynomials, Fibonacci Polynomial and Lucas Polynomials is
b, (x)=sf,(x)+b(2—xt)l (x). (2.4)

3. ldentities of Generalized Fibonacci Lucas Polynomials

In this section, some basic identities of Fibonacci-Lucas polynomials have been obtained by method of generating
function.
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Theorem 3.1: Prove that
b1 (X)=b, ., (x)=xb,(x), n=1.

Proof: By generating function (2.2), we have
ibn (x)t" =[2b(1—xt)+st](L-xt—12) .

n=0

Differentiating with respect to t, to get

an "t =20 (1-xt)+st](x +2t)(1 Xt —t ) (s—2bx)(l—xt —tz)fl,
(1-xt-t?) ann (" =20 (1-xt)+st](x +2t)(L-xt ~t2) " +(s —2bx),
(1-xt —t?) inbn(x (x +2t ibn 2"+ (s —20x),

STnb, ()t = S xnb, ()t = 3 nb, ()t = 3 b, (x tn+1+zzb XY™+ (5 - 20K).
n=0 n=0 n=0 n=0

Equating the coefficient of t, to get
(n+1)b, ., (x)—xnb, (x)—(n-1)b,;(x )=xb, (x)+2b, ,(x),
(n+1)b,,(x)=(n=1)b, 4(x)=(n+1)xb,(x),
by 1 (x ) =By 4 (x ) =xb, (X). (3.1)

Theorem 3.2: Prove that
b, (x)=xb,;(x)+b,,(x)+b, ,(x) ,n>2.

Proof: By Generating function (2.2), we have

ibn (x)t" =[2b(L-xt) +st](1-xt—t?) .

Differentiating with respect to x, to get

S, ()t =[20(2-xt)+st J(-2)(1—xt ~t?) (=) +(1-xt ~t2) " (-20t),
(1-xt —tz)'lib' (x)t" —th X )t" —2bt Zb ()t" —be ”*hib'n(x)t”*z:tibn( X)t"* — 20t

n=0
Equating the coefficient oft , to get
b, (x)=xb,(x)+b,,(x)+b, ,(x),n>2. (3.2)

Theorem 3.3: Prove that
b,,.(x)=xb, (x)+b, (x)+b, ,(x), n>1.

Proof: By 3.1, we have
B,,1(X) = b, (X) =xb, (x), n>1.
Differentiating with respect to x, to get
by .3 (X)) by (X ) =xb, (x) +b, (x ),
bo.a (X ) =xb, (x ) +b, (x)+b,,(x) (3.3)

Theorem 3.4: Prove that

nb, (x)=xb, (x )+2b, ,(x) n>1and

xb, . (x)=(n+1)b,,(x)-2b,(x), n>1.
Proof: By generating function (2.2), we have
ibn(x)t" =[2b(1-xt) +st](1-xt 7).

n=0

Differentiating with respect to t, to get
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inb,1 (x)t"* =[s—2bx](1-xt —'[2)71 +[20(1-xt) +st](1-xt —tz)fz(x +2t). (3.4)
n=0

Differentiating with respect to x, to get

S0, ()" =[-2bt](1-xt 7))+ [2b(1-xt)+ st ]t (1-xt 1),

n=0

ib'n (x)t"* =[-2b](1-xt ~t7) " +[2b(1-xt) +st](1-xt—t?) ",

b, (})t + 2b(1-xt 1) =[2b(1-xt) + st ] (1-xt~t7) . (3.5)
Uising (3.5) in (3.4), to get

ann ()" =[5 —2x J(2-xt —t2) "+ (x + 2L, (x )"+ 20 (L-xt —t7) '},

n=0

-1

nb, (x t"* =[5 —2bx J(L-xt —t2) " +(x +2t)ib'n (Ot +2b (x +2t)(1-xt —t?) ",

M 1D

b, (X)t" = (s = 2bx) (1 xt —2) "+ 30, ()" + 320, ()t + 2b(x+ 2t)(1-xt ~ ) "
n=0

n=0

I
o

n

Equating the coefficient of t"*, to get
nb, (x)=xb’, (x)+2b;(X). (3.6)

Equating the coefficient of t", to get
(n+1)b,,,(x)=xb ., (x)+2b,(x),
X0, (X)=(n+1)b,,,(x)—2b (). (3.7)

Theorem 3.5: Prove that
(n+1)b,(x)=b",(x)+b\ ,(x), n>1.

Proof: By (3.1), we have

B2 (X) = b, (X) =xb, (x), n>1.

Differentiating with respect to x, to get

ba(Xx)=b,(x)=xb" (x)+b,(x),

b, (X)+b, (X)=b\,(X)=b,(X). (3.8)
Using equation (3.5) in equation (3.8), to get

nb, (x)—2b" ,(x)+b, (x)=b,,(x)-b\ 4 (x),

nb, (x)+b, (x)=b", 4 (x)+2b\ (x)-b\(x),

(n+1)b,(x)=b\ ., (x)+b,(X). (3.9)

Theorem 3.6: Prove that

xb\ (x)=20" ,(x)-(n+2)b,(x), n=0.

Proof: Using equation (3.5) in equation (3.9), to get

(n +1)b, (x):b'n+l(x)+%[nbn (x)=xb’, ()],

2(n+1)b, (x)=2b" ,(x )+[nbn (x)—xb’, (x )] ,

xb,(x)=2b",(x)+nb,(x)=(2n+2)b,(x) =2b,,,(X)+(n—2n-2)b,(x) ,

xb, (X)=2b ., (x)—(n+2)b,(x). (3.10)

Theorem 3.7: Prove that
(n+1)xb, (x)=nb\ ,(x)=(n+2)b\ ,(x),n>1

Proof: Using equation (3.3) in equation (3.9), to get
(N+1)f . (x)—xb (x)=b (X }=b",(x)+b " (x),
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(n+1)b ., (X)—(n+1)xb (x)=(n+1)b (X)) =b\,,(x)+b,,(X),

(n+1)b’" ,(x)=(n+1)b 4 (x)=b\ . (x)=b (x)=(n+1)xb (x),

nb',,(x)=(n+2)b ,(x)=(n+1)xb’, (x),

(n+1)xb, (x)=nb ., (x)—(n+2)b, ().

Theorem 3.8: (Explicit sum formula) Prove that
[ﬂ n-m) o
x):2bmz;]{ o jx

Proof: Generating function (2.2), we have
ibn(x )" =[2b (1-xt)+st J(1-xt -t?)"
n=0

=[20(1-xt)+st |(1-xt ~t?)"
=[2b (1—xt)+st]i(x +t)'t"
:[Zb (1—xt)+st:|i.t” i[:]jx n-mgm

=[2b(1—xt)+st]

l'I m ¢ m+n
(n m)'

n+m

n 2m+n

EM* u M:

:[2b(1—xt)+st]i mlnl

el

NS
=

)ann
1.

=|2b(1-xt t 3
[2b( x)+s]Z(; , mlnl
Equating the coefficient of (t” on both sides, to get
& n_ms
by (x) =203, =M oo

=min—2m!

Theorem 3.9: For positive integern >0, prove that
b, (x) = 2bx" zFl(_?n -+l _4j

2 )
Proof: By explicit sum formula (3.12), it follows that
[n/2]
ZbZ(n mJ n-2m
& (nomy
:2bxnz (n m)' X—Zm

—=min—2ml!

T G
g
= 2bx ZF{ ”2+1 - %j

85

(3.11)

(3.12)

(3.13)
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Theorem 3.10: For positive integer n >0, prove that

2 t" c c+1 n+l n+2 t?
b —= 1-—xt F —.n+l,—,—,
(6)0. (0 =20 ) [éz 1 Z(LMJ

=

n

Proof: Multiplying both sides of equation (3.12) by (c), m and summing between limits n=0to n =o0, to get

n
n=2m L

n+ml ( ) n n+2m
= minln+2m! nvam X

=2bii$!)l(c +2m) (c),. (xt)'t*"

iZasmini(n+2m)!

:2b{i((:+2m)n()(t)n}i NEmlg) e

= n! |&Zm!n+2m!

(c+2m) n+m!
“ap(1-x) T S o) e

© I
1 t —(c+2m) N+ Mi o) 2"
,; X m!n+2m!( Jan

& n+m! g2 ]
1 t
X mZ;,m'nJerl )Zm{(l—xt)}

0 2 "
= (1-xt)" Y — ?n++n;:n " CEJ (CTHJ { t 21
m=0 - - m m (1_Xt)

n+m!

=2b(1-xt)* g}ﬁ@)zm (%jm (%ljm Ll_t ;t y T
e S5 (5 ]

8

") ( n( r:jl)[ 72) @ (3),(55), [(ktxt)}

2

S e o
b(1-xt CZ;[ j(n[;fj j(nzzj {(1—txt)2} ’

t" c+1 n+l n+2 t2 J

3 =2b(1—xt F —n+lL——, .
; n n ( ) [2 2 2 2 (1_Xt)2

(3.14)

4. Conclusion

In this paper, Generalized Fibonacci-Lucas Polynomials have been introduced. Some basic identities are obtained by
method of generating function. Also some identities are obtained in hyper geometric form.
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