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Abstract 

 

A class of nontrivial axially symmetric wave solutions to the Yang-Mills equations with SU(2) symmetry is studied. It 

describes transversal non-Abelian waves propagated at constant phase velocities through axially symmetric sources of 

Yang-Mills fields along their axes. In the considered case, the Yang-Mills equations are reduced to a system of six 

nonlinear partial differential equations. These equations are studied for a special class of axially symmetric sources 

satisfying a differential equation of charge conservation. From them partial differential equations of the first order for 

only the Yang-Mills field strengths are derived. To investigate these equations, a special method is proposed. As a result, 

their exact solutions are found. Using them, exact formulas for the field strengths and potentials in the non-Abelian 

waves under examination are obtained. 
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1 Introduction 

The Yang-Mills field theory is one of the greatest achievements of the XX century, which plays a leading role in 

modern quantum physics [1–3]. At the same time, the whole area of its applications can concern not only quantum 

physics but also classical physics [4–6]. To explain this point of view, let us consider powerful fields caused by very big 

charges and currents. In them not only photons but also massive WZ   and 0  bosons could be generated, which are 

carriers of weak interactions. In such cases, the Maxwell equations may be incorrect since they are applicable to fields 

for which only photons are their carriers. On the other hand, there are Yang-Mills equations with SU(2) symmetry 

which are a nonlinear generalization of the linear Maxwell equations and play an important role in various models of 

electroweak interactions caused by photons and WZ   and 0  bosons. 

For this reason, the classical Yang-Mills equations with SU(2) symmetry can be also applicable to the case of powerful 

field sources with very big charges and currents, when 
WZ   and 0

 bosons may be generated, along with photons. 

These equations can be represented in the form [1–3] 

 

    






  ,,,, )/4( kml

klm
kk JcAFgFFD  , (1) 

 

           ,,,,, ml
klm

kkk AAgAAF  , (2) 

 

where 
 ,,   and kk FA  are potentials and strengths of a Yang-Mills field, respectively, 3 ,2 ,1 ,0,  ;3 ,2 ,1,,  mlk , 

and the summation over repeated indices is implied, 
,kJ are three 4-vectors of source current densities, klm  is the 

antisymmetric tensor, 1123  ,  g  is the constant of electroweak interactions, D  is the Yang-Mills covariant 

derivative, 
 x / , x  are space-time coordinates of the Minkowski geometry, zxyxxxctx  3210   ,  ,  , ,  

t  is time,  and  x, y, z  are spatial rectangular coordinates. 

As is well known, the Yang-Mills field strengths ,kF  satisfy the following identity [1–3]: 

     0, 


kFDD    (3) 

and hence, the Yang-Mills equations (1)–(2) have the consequence 
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From here on, we will consider the field sources ,kJ  of the form 

 

      0    , ,3,2,1   JJJJ ,   (5) 

 

where J  is a classical 4-vector of current densities. 

Then from (4) with k=1 and (5), we come to the differential equation of charge conservation 

 

       0 
 J .   (6) 

 

It should be noted that the Yang-Mills equations with SU(2) symmetry are covariant under rotations of the vectors ,kJ   

in the three-dimensional gauge space [1–3]. That is why the considered case of field sources of form (5) can be 

extended to sources of the form 

 

           VJ kk , ,   (7) 

 

where Vk   and   are arbitrary functions. 

Indeed, field sources of form (7) can be reduced by gauge rotations to sources of form (5), where we should put 
2322212 )()()()(  and   VJ . Therefore, sources of form (7) satisfy the differential equation (6) of 

charge conservation, where  VJ  . 

 

It is evident that the Yang-Mills equations (1)–(2) with field sources of form (5) have the following particular Abelian 

solutions: 
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    (8) 

 

where the field potentials ,1A  and strengths ,1F satisfy the Maxwell equations. 

At the same time, there exist classes of non-Abelian solutions to the Yang-Mills equations (1)–(2) with the field sources 

of form (5) and a number of them were found in Refs. [4–6]. 

Besides, the Lagrangian and energy-momentum tensor of Yang-Mills fields are related to their strengths by the same 

formulas as those of Maxwell fields. That is why the Yang-Mills equations (1)–(2) with the field sources of form (5) 

can be regarded as a reasonable nonlinear generalization of the linear Maxwell equations. 

 

One of the important problems is a search for non-Abelian wave solutions to the Yang-Mills equations. It should be 

noted that in Refs. [7–15] non-Abelian plane waves and their generalizations were studied and in Refs. [16, 17] a class 

of expanding non-Abelian waves propagated outside their sources was investigated. 

In the present paper, we investigate non-Abelian waves propagated through axially symmetric sources of Yang-Mills 

fields. Consider the Yang-Mills equations (1)–(2) in the case of axially symmetric sources ,kJ of the following form 

conforming to (5): 
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    (9) 

 

where j  are some functions of the wave phase zx 0  and the radial coordinate  . 

These expressions describe waves propagated at the phase velocity c  through Yang-Mills field sources in the 

direction of their axis of symmetry z . 
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Let us seek axially symmetric wave solutions to the Yang-Mills equations (1)–(2) with the considered field sources, 

given by expressions (9), in the form 

 

      ),(   ),,(   ),,(   ),,( 3,2,1,0,  kkkkkkkk wAyvAxvAuA  .      (10) 

 

Substituting expressions (10) into formula (2) for the field strengths ,kF , we find 
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where    /   ,/ kkkk uuuu , and also obtain 
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Let us now substitute expressions (9)–(12) for the field sources, potentials, and strengths under examination into the 

Yang-Mills equations (1). Then we come to the following system of equations: 

 

    k
mlml

klm
kkk jcwsvqgsqq  

02 )/4()(2  ,   (13) 

 

     k
mlml

klm
kk jcwhuqghq  

1)/4()(  ,   (14) 

 

       k
mlml

klm
kkk jcvhusghhs  

32 )/4()(2  ,   (15) 

 

where 

                

 0    ,1 321   .   (16) 

 

In section 2, we will study the obtained system of equations (13)–(16) in the case of transversal non-Abelian waves and 

reduce them to a system of six nonlinear partial differential equations. In section 3, we will examine the six differential 

equations and find exact formulas for the field strengths in the considered transversal non-Abelian waves. In section 4, 

we will obtain exact expressions for the field potentials in such non-Abelian waves. In section 5, we will examine a 

subclass of the obtained wave solutions satisfying an additional differential condition which expresses the conservation 

of the intrinsic energy of a field source when Yang-Mills field quanta are created inside it. 

 

2 Investigation of transversal non-Abelian waves 

Consider the case of transversal non-Abelian waves in which the vector of energy flow is parallel to the direction z of 

their propagation. Then we should put 

 

      003,  kk sF .    (17) 

 

From (11) and (17), we have 

 

      0)(  ml
klm

kk wuguw   .    (18) 

 

Multiplying (18) by 
kk uw   and summing the product over k, we find, taking into account the antisymmetry of klm , 
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


.    (19) 

 

Let us assume that the considered waves are absent and have zero potentials when 0 . Then, as follows from (19), 

we have 

 

    kk wu  .    (20) 

 

From (11), (12), and (20), we obtain 

 

      kk hq  .    (21) 

 

Substituting equalities (17), (20), and (21) into equations (13)–(15), we come to the following system of equations: 

 

     30 jj  ,    (22) 
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It should be noted that the following sources 30  , jj can satisfy the equality (22) which are the sum of the 

sources 3
2

0
2

3
1

0
1  , and  , jjjj  with different signs of the charges of their carriers: 

 

    

,    ,

)],,(1)[,(    )],,(1)[,(

,    ,

1
0
2

3
22

0
1

3
1

2
0
21

0
1

3
2

3
1

30
2

0
1

0





jjjj

jj

jjjjjj







    (25) 

 

where ),( and ),,( )),,( 21   are arbitrary functions. 

First, consider the particular case 1 . Then from (20)–(24) and (12), we derive 
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Let us put 
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Then multiplying equation (27) by kh  and summing the product over k, we obtain, using (16) and the antisymmetry of 

klm , 

 

   hhjchh /)/4(2 13   .    (30) 

    

Besides (30), equation (27) gives the relation of the functions 
kv  to the functions 3  and jhk . As to equation (28), it 

relates the functions kw to the functions kk hv   and . 

Taking into account (29), we can put 
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        sinsin    ,cossin    ,cos 321 hhhhhh  ,    (31) 

 

where    and  are some differentiable functions. 

Then from equation (30) we find that the function h  with no singularity at 0  has the form 

      








0
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 cos

4
dj

c
h .    (32) 

Thus, the sought functions kh  can be found by formulas (31) and (32) in the particular case 1 . In these formulas 

   and   are arbitrary differentiable functions of the arguments zx  0  and  . 

 

Examine now the system of equations (23) and (24), describing the transversal non-Abelian waves under consideration, 

for arbitrary values of the parameter . 

Let us use equalities (4)–(6). From them we readily find 

 

      0     ,0     ,0 3,12,1,1  
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
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Taking into account (9) and (10), from (33) we obtain 

 

       02 3110    jjjj ,    (34) 

 

      3 ,2    ,03120  kwjvjuj kkk  .    (35) 

 

Owing to (5), we can choose a gauge rotation about the first axis in the gauge space so as to also fulfill equality (35) 

when 1k . 

Then because of (20) and (22), equation (35) acquires the form 

 

     3 ,2 ,1    ,0)1( 3212  kwjvj kk  .    (36) 

 

Using equality (22) again, we can represent equation (34) as 

  

      3211 )1(2   jjj  .               (37) 

 

Let us denote 

 

     32122     ),1/(    , jbjahf kk   .    (38) 

 

Using (38), we can rewrite equalities (36) and (37) as 

 

      kk bwva  ,    (39) 

 

       ba  .    (40) 

 

Let us turn to equations (23) and (24). Using (38) again, we can represent them in the form 
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3 Field strengths in transversal non-Abelian waves      

Consider equations (39)–(42). From equation (39), we have 

 

     kkkk awbv       , ,    (43) 

 

where  ),(  kk   are some functions. 

Substituting (43) into equations (41) and (42), we obtain 

 

      k
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k
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where 
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Consider now the expression for the functions kh in formulas (12). As follows from (38), (43), and the antisymmetry of 

klm ,  it acquires the form 

 

    ])()[(   kkk baf  .    (46) 

 

Let us turn to solving equations (44). From them we easily obtain 

 

  0 kk bfaf  .    (47) 

 

It should be noted that we can find exact solutions to the partial differential equations (47). They are given by the 

following proposition. 

 

Proposition 3.1: The partial differential equations (47), where the functions ba   and   are defined in (38) and satisfy 

equation (40), have the following exact solutions: 
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Here )(k  are arbitrary differentiable functions which, as follows from (38), satisfy the condition 

 

       0)0( k .               (49) 

 

Proof. Indeed, from (48) we have, taking into account (40), 
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where it is used that because of (38), 0a  when 0 . 

From formulas (51) we easily come to equalities (47), which is what we set out to prove. 

 

Because of the arbitrariness of the functions k , the obtained formulas (48) give the general solutions to equations (47), 

since they are partial differential equations of the first order. 

Let us now substitute expressions (48) for the functions kf  and formulas (51) for their derivatives into equations (44)–

(45). Then these equations acquire the form 
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where we have taken (16) into account. 

Multiplying equations (52) by k  and then summing them over k, we obtain, using the antisymmetry of klm , 

 

     



3

1

1)/4(/
k

kk cdd  .    (53) 

 

Besides (53), from equations (52) we derive 
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The obtained relations (11), (12), (17), (21), (38), (48), and (49) give the following formulas for the field strengths in 

the considered transversal non-Abelian waves: 
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where )(k  are arbitrary differentiable functions satisfying relation (53) and equal to zero when 0 . 

Let us put 
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Then from equation (53) we find 
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Formulas (55)–(59) describe the Yang-Mills field strengths ,kF for the considered class of transversal non-Abelian 

waves propagated at the constant phase velocity c  through field sources in the direction of their axis of symmetry z . 

This class is determined by two arbitrary differentiable functions )(  and  )(  , where   is defined by the second 

formula in (57) and depends on the wave phase zx 0  and coordinate  . 

 

4 Field potentials in transversal non-Abelian waves 

Let us turn to equations (46). From them and the formula in (48) for the functions kf , we obtain 

 

     /)()()( kkk ba  .    (60) 

 

Using equality (40), from (60) we easily derive 
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         /)()()( kkk ba  .    (61) 

 

Consider expressions (54) and represent them in the form 
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Let us now prove the following property of equations (61). 

 

Proposition 4.1: Equations (61) with 3 ,2k  are consequences of equation (61) with 1k  and equalities (50) and 

(62)–(63). 

 

Proof. Consider the derivatives of the functions 32   and  . From (62) we derive, using equalities (50), 
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These equalities give 
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From equation (61) with 1k  and equalities (65), we find 
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Taking into account the formula for kN  in (63), from (66) we obtain equalities (61) with 3 ,2k , which are exactly 

what we set out to prove. 

 

Consider now equation (61) with 1k  which has the form 

 

       /)()()( 111 ba .    (67) 

 

First, let us note that equation (67) becomes trivial in a region where 03 j , since in it we have const  and  0  b , 

as follows from (48). 

To solve equation (67) when 03 j , let us introduce the inverse function 

 

   ),(       (68) 

 

for the function ),(   of form (48): 

 

      

 


0 0

3 ),( djdb     (69) 

 

in an arbitrary domain where 0or    0 33  jj . 

Then we can put 
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   ),()(    ),,( 11  QbP   ,               (70) 

 

where ),( P  is an unknown function of the arguments    and  and the function ),( Q  can be determined from the 

expressions for b and   in (48). 

From formulas (50) and the first equality in (70), we find 

 

        aPPbP  )(    ,)( 11 .    (71) 

 

Therefore, 

 

     bPba  )()( 11 .    (72) 

 

Using this equality, we can represent equation (67) in the form 

 

       /)(1bP .    (73) 

 

Equation (73) and formulas (70) give 

 

      )(),()()/1(/    ),(),( 0
111  PdQPQP ,    (74) 

 

where )(0 P  is an arbitrary function. 

From formulas (62), (63), and (74), we find expressions for the functions k . Using these expressions and formulas 

(10), (20), (38), (43), and (48), we can determine the Yang-Mills field potentials ,kA  for the considered class of 

transversal non-Abelian waves. 

 

5 Transversal wave solutions of the Yang-Mills equations with an additional 

condition 

As is seen from formulas (55)–(59), the obtained Yang-Mills field strengths generated by given field sources of form 

(9) are not determined uniquely. This can be explained by the fact that the Yang-Mills equations (1)–(2) with field 

sources of form (5), and in particular of form (9), are not independent. Namely, as follows from formulas (3) and (5)–

(6), they are related by the differential identity 

 

    0))/4(( ,,  
  kk JcFDD   when 1k .    (75) 

 

That is why we should find an additional equation to uniquely determine the field strengths ,kF . For this purpose let 

us introduce the following expressions: 

 

          ml
klm

kk AFcgJJ 
  ,,, )4/(


.    (76) 

 

Then the Yang-Mills equations (1) can be represented as 

 

    


  ,, )/4( kk JcF


 .    (77) 

 

Since 0  hence  and ,,,  


 kkk FFF , from (77) we obtain the following differential equations of 

conservation for the expressions ,kJ


: 

 

       0,  


kJ


.    (78) 
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As follows from (76)–(78), the expressions ,kJ


 can be interpreted as full field sources which include not only the 

classical field sources ,kJ  but also Yang-Mills field quanta. 

Consider 


,
,

k
k JJ


. This value should be proportional to the density of the full energy of interactions of the charged 

particles in a field source and for it the following additional equation was suggested in Refs. [4–6, 17]: 

 

       





,
,

,
,

k
k

k
k JJJJ 


,    (79) 

 

where k
k

k
k JJJJ   , ,  and 


. 

This equation can be interpreted as a differential condition expressing the conservation of the intrinsic energy of a field 

source when Yang-Mills field quanta are created inside it [4–6, 17]. 

 

Consider now transversal non-Abelian wave solutions satisfying not only the Yang-Mills equations (1)–(2) but also the 

additional differential condition (79). For this purpose, let us turn to expressions (55)–(56) for the strengths ,kF in the 

transversal non-Abelian waves under examination. 

From formulas (55), (56), (50), and (38), we find 

 

   

./    ,/

,/    ,/

33,12,

11,30,

















ddjFddyjF

ddxjFddjF

kkkk

kkkk





    (80) 

 

Formulas (77) and (80) give 

 

   



3

1

2212232
,

,2 )/( ])())(1[()/4(
k

k
k

k ddjjJJc  



    (81) 

 

and from formulas (9) and (22), we obtain 

 

        212232
,

, )())(1( jjJJ k
k 
  .    (82) 

 

Substituting now expressions (81) and (82) into equation (79), we come to the equation 

 

     



3

1

22 )/4()/(
k

k cdd  .    (83) 

 

This equation should be added to formulas (58) and (59) for the functions )(k . 

Let us choose the gauge 4/   in expressions (58) for )(k , taking into account the equality 0,3,2   JJ  in 

(9) and hence, the equivalence of the second and third axes in the gauge space. Then substituting formulas (58) for 

)(k into equation (83), we find 

 

   4/    ),(    ),(    ,)/4()()( 222   c .                .    (84) 

 

From equations (59) and (84), we obtain 

 

        sin)/(4    ,cos)/4( cc  .    (85) 

 

The two equations (85) give 

 

        cot/ .    (86) 

 

Let us integrate this equation. Then we get 
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    constsinlnln   .    (87) 

 

Choosing the sign ‘+’ in (87) and hence in the second equation in (85), in order to have their nonsingular solution, we 

find 

 

      const    ,sin 00  DD  .    (88) 

 

Then substituting expression (88) for the function )(  into equations (85) and taking into account that the sign ‘+’ has 

been chosen in the second of them, we obtain 

 

     const     ,
4

     ,
4

)( 11
00

 DD
cDcD







 .    (89) 

 

As follows from (59), 0)0(  . That is why we set 01 D  and from (88) and (89), we get 

 

     const     ,sin     ,
4

00
0

 DD
cD




 .    (90) 

 

Substituting now the obtained formulas (90) into expressions (58) for )(k , using expression (57) for  , and taking 

into account that the gauge 4/   was above chosen, we obtain 

 

       
4

    ,cos1
2

    const,
4

    ,sin
2 3201 

 


























D

I

c

DcD
D

D

I

c

D
,    (91) 

 

        




0

3 ),(2 djI ,    (92) 

 

where ),( II   is the source current passing along the axis z through the circle 222  yx orthogonal to it. 

 

From formulas (55)–(57) and (91), we find the following expressions for the field strengths ,kF  in the transversal 

non-Abelian waves under consideration: 

 

     

,
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I
FF
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I
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x

c

I
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

    (93) 

 

where 

 

    












0

03
eff ) ,(2    , sin dzxjI

D

I
DI ,    (94) 

 

and 
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    (95) 

 

Here D  is some constant. 

Below we will use the terms ‘actual’ and ‘effective’ for the currents ) ,( 0  zxII   and )/sin(eff DIDI  , 

respectively, along the axis z through the circle 222  yx  orthogonal to it. 

It should be noted that when DI  , the effective current effI  practically coincides with the actual current I  and we 

have the Maxwell field expressions for the strengths components ,1F .  The value D  should be a sufficiently large 

constant. Then the obtained formulas (93)–(95) for the Yang-Mills field strengths ,kF can be regarded as a nonlinear 

generalization of the corresponding Maxwell field expressions when the actual current I  is sufficiently large. 

 

Consider equation (77) with 3  and  1  k . Substituting the formulas in (93) for 3,1 F  into this equation, we obtain 

 

 zxdJIJI  
0

0

3,1
eff

3,1
eff      ,),( 2),(     , 2/ 

 
.    (96) 

Formulas (96), (76), and (92) signify that the effective current ),(eff I with the density 3,1J


can be interpreted as the 

full current passing along the axis z through the circle 222  yx  orthogonal to it, which includes not only the actual 

current ),( I  with the density 33,1 jJ   but also the current of Yang-Mills field quanta.  

                                                    

6 Conclusion 

We have studied solutions to the Yang-Mills equations with SU(2) symmetry which describe transversal non-Abelian 

waves propagated at constant phase velocities through axially symmetric field sources. Our investigation of such waves 

showed that in the case under examination, the Yang-Mills equations could be reduced to a system of six nonlinear 

partial differential equations. These equations were studied for a special class of field sources satisfying a differential 

equation of charge conservation.  

First, we considered transversal waves propagated at the speed of light in which only three differential equations 

remained to be solved. After that we studied transversal waves propagated through field sources at arbitrary constant 

phase velocities. Investigating the six nonlinear partial differential equations describing transversal non-Abelian waves, 

we found their consequences that were equations for only the Yang-Mills field strengths. It was shown that the found 

equations for the field strengths had exact solutions. Using them, we obtained formulas for the field strengths in the 

examined transversal non-Abelian waves. The further analysis allowed us to find expressions for the field potentials in 

such waves. 

The obtained wave solutions to the Yang-Mills equations were not uniquely determined, since they contained an 

unknown function which could be arbitrary. In order to find unique expressions for the field strengths in the considered 

waves, an additional equation was suggested. This equation was regarded as a differential condition expressing the 

conservation of the intrinsic energy of a field source when Yang-Mills field quanta are created inside it. Using the 

additional condition, we found the unknown function and determined unambiguous expressions for the field strengths in 

the transversal non-Abelian waves under consideration. 
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