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Abstract 
 

The main aim of initial gravity data processing is to determine the density of under-research geological structures and stratification mat 

rials in this case. The density is important for the calculation of the Bouguer plate and terrain corrections. To achieve the corrected gravi-

ty data with high quality and accuracy, exact estimation of the density is very significant, but representative optimum density value for an 

area of interest is notoriously difficult to obtain. In this paper, several statistical methods based on the correlation are proposed, such as 

variation and fractal for surface optimum density determination. The efficiency of the methods has been employed for a case study in 

north of Iran. 
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1. Introduction 

Density is defined as the mass per unit of volume of a material. It 

has been measured in different units and different numerical val-

ues in the C.G.S and SI systems. An awareness of the value of 

bulk density is obviously important to gravity data interpretation. 

The more precise corrected gravity data, the more accurate quanti-

tative and qualitative results are. 0.1 gr/cm3 in the reduction densi-

ty, and nearly 0.42 mGal in Bouguer anomaly for per 100 m, is 

not a great error in itself, but an error of 0.1 g/cm3 in the density 

may have a huge impact on the interpretations of Bouguer anoma-

lies (Yamamoto 1998).The The near-surface density of the materi-

al under a hill can be determined by a prevalent method devised 

by L. Nettleton (1939). Nettleton´s method uses a profile meas-

ured across a topographic feature to find the best estimate of bulk 

density for a region. Thereafter, effective and efficient methods 

for density determinations from surface gravity measurements 

have been extensively developed (e.g. Parasnis 1952, Rikitake et 

al. 1965, Fukao et al. 1981, Murata 1993). Parasnis (1972) pro-

posed an analytical method for calculation surface average density. 

Most of these methods adopted statistical procedures using the 

correlations among Bouguer anomalies, free-air anomalies, station 

heights, and reduction density itself from surface gravity data. 

Nevertheless, the mentioned methods in many cases lose their 

efficiency especially in flat areas. Several methods have been 

proposed to estimate a variable density of surface and near-surface 

topography (Vajk 1956, Grant & Elsaharty 1962, Bichara & Lak-

shmanan 1983, Rimbert et al. 1987, Moribayashi 1990, Murata 

1993). Since the residual anomalies after gravity reduction using a 

single constant density, still contain density inhomogeneities. 

They applied the method of overlapping windows and determined 

a Bouguer reduction density for each of the windows using the 

data within each of them. Density can be measured through verti-

cal boreholes, drilled to explore the nature of an assumed structure. 

The resulting density in the borehole is employed to refine the 

interpretation of the structure. Determined density using borehole 

seismic velocities, gamma–gamma logging and borehole gravime-

try methods can be considered. Verifying and interpretation of 

borehole gravimetry give a good estimation of bulk in situ rock 

densities (e.g. Hammer 1950, Gibb & Thomas 1980, LaFehr 1983). 

Sissons (1981) configured a least-squares method for the direct 

inversion of surface and subsurface gravity measurements to esti-

mate in situ rock densities. Thorarinsson and Magnusson (1990) 

and Chapin (1996) presented fractal analysis methods for Bouguer 

density determination. However, these methods associated with 

subsurface gravity measurements are valid only for quite limited 

area where the rock unit is reasonably homogeneous in composi-

tion. A more well-known method is the Nettleton´s method that is 

widely used to obtain an optimal average density value; however, 

in some of the areas its efficiency reduces, particular the even 

region. We have exhibited several methods based on statistical 

techniques and fractal property that restrain its proficiency in 

many areas with different morphology.  

2. Study region 

The studied region with an area of approximately 2800 km2 is 

located in the south of the Caspian Sea, Mazandaran province, 

Iran (Fig.1). The northern part of this area has been covered by the 

Quaternary sediments such as loose alluvium; shore line sands, 

fluvial clay plain, young alluvium, silt and clay flats. The sedi-

ments and rocks of the geological formations are related to the 

Neogene and Paleogene era such as silt, marl, silty marly lime-

stone, gypsum, sand stone, silty marl, etc. they have formed the 

middle and soutern parts of the mentioned zone. The gravity data 

set consists of 728 measurements dispersed stations.  
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Fig. 1: Situation of the Case Study Region Has Been Determined with the 

Red Rectangular in the Left Picture. in the Right Picture, the Pink Cursors 

Display the Quadrangle of the Case Study Region. 

3. Methodology 

This paper comprises the 4 statistical procedures inclusive of the 

correlation, variations' coefficient, weighted variance and fractal 

dimension methods. Using this statistical process can compare the 

comparative intensity of the variability of the various statistic 

populations. Gravity data is a complex appearance combination of 

scale-dependent and scale-independent (fractal) components. The 

gravity effects of geological structures distributions with various 

densities are essentially scale-dependent, while topography is the 

primary scale-independent component. 

Theoretically, the correlation, variation coefficient and fractal 

dimension should decrease with increasing density. According to 

the Bouguer slab formula: 

 

b A hc                                                                                  (1) 

 

That 

 

2A G  

 

Where 
cb  is the Bouguer correction and A is the constant 0.0419, 

for units in meters. In (1), the Aρ term is scale-dependent, while h 

(elevation) is scale independent. 

These techniques are based on computed Bouguer anomalies using 

different densities. The aim of these methods is finding the density 

that the final result should be an optimum near-surface density 

which is the best one that reduces all the data. 

3.1. Correlation method 

Unlike Nettleton´s method in which the criterion is minimum 

correlation between topography and Bouguer anomalies with dif-

ferent densities along a profile, the correlation between the 

Bouguer anomalies and altitude related to the gravity reading sta-

tions while the area thoroughly be covered of sampling points on 

the ground surface is spotted.  

In order to achieve our desirable results, the correlation coefficient 

is estimated with two vectors: 
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Where x  and y  are the average of two numerical sets with n 

elements ( x and y  are the Bouguer data set, and height data set 

respectively). The procedure for a given data set is performed as 

follows. After calculating the Bouguer anomalies with various 

densities, the correlation between the elevation and Bouguer 

anomalies of the entire different stations in the study area is com-

puted. The plot of the correlation versus the density for 14 classes 

of the Bouguer grids computed using different Bouguer densities 

from the Mazandaran's gravity data set (Fig.2). A straight-line 

least-squares is fitted to curve. Linear trend is caused by the influ-

ence of the linear Bouguer slab equation. According to the 

straight-line equation, the correlations which rival the densities 

will be computed. Therefore, elimination of the least-squares line-

ar reply from the curve of the correlation values versus density, 

yields results that show a unique density that minimizes the topo-

graphic effects in Mazandaran region (Fig.3). This value is 2.3 

gr/cm3. 

 

 
Fig. 2: Plot of the Correlation Versus Density for 14 Classes of the 
Bouguer Grids Computed Using Different Bouguer Densities from the 

Mazandaran Gravity Data Set. The Linear Trend Is Caused Made by the 

Influence of the Linear Bouguer Slab Equation. 

 

 
Fig. 3: Plot of the Correlation Differences versus the Density for 14 Clas-

ses of Different Bouguer Densities. The Effects of Topography and 
Bouguer Slab are minimized at 2.3 Gr/Cm3 Densities. In other Word, this 

Density Is Optimum Density for Bouguer and Terrain Corrections. 

3.2. Variations coefficient method 

The variations coefficient is defined as normalized standard devia-

tion, that is. 

 

S
CV

X
                                                                                       (3) 

 

Where S is the standard deviation and X  is the average of the 

statistical society. 

The variations coefficient related to the Bouguer gravity obtained 

of the various densities is calculated for the under study area. The 

drawn curve shows the variation coefficient versus the 14 variant 

densities (Fig.4) .The crossover points have been determined with 

orange color. The least-squares line superimpose on variations 

coefficient – density curve. The difference between the solution, 

the least-squares line fitted to the variations coefficient, and initial 

function are displayed in Figure 4, unfolding a function that be-

comes a minimum at 2.3 gr/cm3 (Fig.5). The result is similar to the 

correlation method.  
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Fig. 4: Plot of the Variation Coefficient Versus Density for 14 Classes of 

the Bouguer Grids Computed Using Different Bouguer Densities from the 
Mazandaran Gravity Data Set. The Points Has Been Determined with 

Orange Color. The Least-Squares Line Superimpose on Variations Coeffi-

cient – Dens -Ty Function. 

 

 
Fig. 5: Plot of the Variation Coefficient Differences versus the Density for 
14 Classes of Different Bouguer Densities. The Effects of Topography and 

Bouguer Slab are minimized at 2.3 Gr/Cm3 Density. In other Word, This 

Density Is Optimum Density for Bouguer and Terrain Corrections. 

3.3. Weighted variance method 

Sampling is performed from the obtained Bouguer anomaly grid 

of the density ρw with intervals d1, d2… di. Afterwards, the vari-

ance will be computed for each generated data set. The weighted 

variance is given as: 
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Where w is the weighted variance, n1 and 1 are the number and 

variance of data set by sampling with length d1, n2 and 2 are the 

number and variance of data set by sampling with length d2 and so 

forth. 

This procedure is done for the Bouguer anomalies with densities 

ρ1, ρ2… ρi. Accordingly will be attained the weighted variances 1, 

2… i. The curve of the weighted variances versus the 14 variant 

densities is displayed (Fig.6). The least-squares line is fitted on the 

curve. The difference between the weighted variances from equa-

tion 4 and straight line formula is shown (Fig.7). 

 

 
Fig. 6: Plot of the Weighted Variance Versus Density for 14 Classes of the 

Bouguer Grids Computed Using Different Bouguer Densities from the 

Mazandaran Gravity Data Set. The Linear Trend Is Caused by the Influ-
ence of the Linear Bouguer Slab Equation. 

 

 
 

Fig. 7: Plot of the Weighted Variance Differences versus the Density for 

14 Classes of Different Bouguer Densities. The Effects of Topography and 

Bouguer Slab are minimized at 2.3 Gr/Cm3 Density. In other Word, this 
Density Is Optimum Density for Bouguer and Terrain Corrections. 

 

The minimum value of the weighted variance difference is related 

to density of 2.3 gr/cm3.This density is the ideal Bouguer density 

for the under study region. 

3.4. Fractal method 

The detectability limits of a large-scale geophysical measuring 

network such as station spacing in gravity, magnetic depends on 

the fractal dimension of the network and the anomaly (Lovejoy et 

al., 1986; Korvin, 1992). The gravity anomaly resulting from the 

fractal nature of nonrandom sources distribution of density cannot 

be accurately measured unless its fractal dimension does not ex-

ceed the difference of the 2-D Euclidean and fractal dimension of 

the network (Thorarinsson and Magnusson 1990, Lovejoy et al. 

1986, Korvin 1992). The scale-dependence of the Aρ term mani-

fests itself as a purely linear effect. Therefore, like the statistical 

methods that have been described in previous portions, a differ-

ence between the density function (the curve of the fractal dimen-

sion versus density), and the least-squares line fitted to the fractal 

dimension yields results, which show a unique density that mini-

mizes the topographic effects. Briefly, this value represents the 

best density to use in the Bouguer slab correction.  

Resembling the weighted variance method the gravity data sam-

pling is carried out with variant distances for the each Bouguer 

anomaly with specific density. Then equivalent with the sampling 

different distances will be the gravity data set. The variance of the 

data sets is calculated and plotted logarithmically versus the loga-

rithm of the sampling distance value of each class. Then, the plot 

is checked visually to distinguish whether a least-squares regres-

sion line can be fitted to the values, or to some range of the values. 

The fractal dimension is derived from the slope of the fitted line. 
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This scheme is achieved for the computed Bouguer anomalies 

using diverse densities. The fractal dimension can be estimated as:  

 

1 10dD                                                                                     (5) 

 

Where d is the slope of the fitted least squares line and D is the 

fractal dimension.  

Simple Bouguer gravity grids were computed for the data set of 

Mazandaran region and fractal dimensions determined for densi-

ties ranging from 1.7 gr/cm3 through 3.00 gr/cm3 at 0.1 gr/cm3 

intervals. The variogram of the Bouguer anomaly with ρ= 

2.3gr/cm3 3gr/cm3 is exhibited, and linear property is presented 

while the sampling distances 27.5 m to 166 m is visible (Fig. 8).  

This fractal behavior indicates the close relationship of the 

Bouguer gravity with topography. At the longer distances the non-

linear relationship and no fractal behavior is attributed to isostatic 

effects becoming dominate (Chapin 1996). Increasing the sam-

pling interval, we will face longer wavelength.  

The variogram of the fractal dimension versus the density and 

superimpose a least-squares line fitted into the curve has been 

indicated in Fig.9. This straight line is the reflection of the linear 

effect of the scale-dependence term. Therefore, removal the initial 

fractal dimension values from the computed fractal dimension 

values using least-squares line equation yields results that show a 

unique and optimum density that downgrades the topographic 

effects (Fig.10). The minimum value of the fractal dimension 

difference depends on 2.3 gr/cm3 density.  

 

 
Fig. 8: Variogram for the Bouguer Anomaly with 2.3 Gr/Cm3 Density in 

the Mazandaran Area; Linear Feature Is for Sampling Distances between 
Approximately 27.5 and 166 M, But Nonfractal Outside that Range. 

4. Discussion and conclusions 

Requisite condition for density determination using the method 

that proposed by Thorarinsson and Magnusson (1990) delineate a 

circle as include the area maximum under consideration while 

mostly field operations is performed in the regions with non-

geometric shape or lengthy regions for the 2.5 dimension targets.  

 

 
Fig. 9: Plot of the Feractal Dimension Versus Density for 14 Classes of the 

Bouguer Grids Computed Using Different Bouguer Densities from the 

Mazandaran Gravity Data Set. The Linear Trend Is Caused by the Influ-

ence of the Linear Bouguer Slab Equation. In other Word, The Scale-

Dependence of the Aρ Term Manifests Itself as a Linear Effect. 

 

 
Fig. 10: Plot of the Fractal Dimension Differences versus the Density for 

14 Classes of Different Bouguer Densities. The Effects of Topography and 

Bouguer Slab are minimized at 2.3 Gr/Cm3 Density. In other Word, This 
Density Is Optimum Density for Bouguer Correction. 

 

One of the prominent advantages the mentioned method is the 

efficiency for all samplings designing in an exploratory area with 

various forms. Topography scale-independent factor in the 

Bouguer slab equation camber the drawn statistical variables ver-

sus the density. The linear trend is caused by the influence of the 

scale-dependence term of the Bouguer slab equation. The least 

difference between the two density functions yields the best densi-

ty to use in the Bouguer slab correction. The dimension D of a 

fractal surface lies between 2D (a plane) and 3D (a solid volume) 

(Mandelbrot, 1975). In the proposed equation for the fractal di-

mension calculation, for zero degree tilt, the fractal dimension 

assumes two. When the diverse gravity data set was examined, the 

slope least-squares regression line in the variogram variance ver-

sus the distance would not be major of 0.3. All four statistical 

methods exhibit same consequences for the area under survey. The 

optimum density of 2.3 gr/cm3 shows a good conformity with the 

geological formation in Mazandaran region and is the best density 

that reduces all the data. 
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