Theoretical investigations of ZnO/CdO material – A DFT approach

Authors

  • Rackesh Jawaher

    BS Abdur Rahman Crescent Institute of Science and Technology, Chennai - 600048
  • Indirajith R

    B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai
  • Krishnan S

    Ramakrishna Mission Vivekananda College (Autonomous), Chennai
  • Bharanidharan Bharani

    Bharath Institute of Higher Education and Research, Bharath University, Chennai
  • Robert R

    Government Arts College for Men, Krishnagiri
  • Jerome Das S

    Loyola College, Chennai

How to Cite

Jawaher, R., R, I., S, K., Bharani, B., R, R., & S, J. D. (2018). Theoretical investigations of ZnO/CdO material – A DFT approach. International Journal of Advanced Chemistry, 6(1), 79-84. https://doi.org/10.14419/ijac.v6i1.9312

Received date: January 29, 2018

Accepted date: March 5, 2018

Published date: March 10, 2018

DOI:

https://doi.org/10.14419/ijac.v6i1.9312

Keywords:

ZnO/CdO, DFT Study, NLO, NBO, MEP.

Abstract

The theoretical investigations of ZnO/CdO material were carried out by using ab initio calculations. The bond parameters such as bond lengths, bond angles and dihedral angles were calculated at DFT/B3LYP/LANL2DZ level of theory. The NLO property of the title molecule was calculated using a first order hyperpolarizability calculation. NBO study reveals that the hyperconjucative
interactions between the material. Homo-Lumo analysis the charge transfer occurs within the molecule. MEP surface predicts the reactive sites of the present molecule. In addition of Mulliken atomic charges and thermodynamic parameters were also plotted and calculated.

References

  1. [1] Chong, X., Li, L., Yan, X., Hu, D., Li, H., & Wang, Y. (2012).
    Synthesis, characterization and room temperature
    photoluminescence properties of Al doped ZnO nanorods. Physica E: Low-Dimensional Systems and Nanostructures, 44(7-8),
    1399–1405. https://doi.org/10.1016/j.physe.2012.03.001.

    [2] Tsai, D.-S., Lin, C.-A., Lien, W.-C., Chang, H.-C., Wang, Y.-L., & He, J.-H. (2011). Ultra-High-Responsivity Broadband Detection of Si Metal–Semiconductor–Metal SchottkyPhotodetectors Improved by ZnO Nanorod Arrays. ACS Nano, 5(10), 7748–7753. https://doi.org/10.1021/nn203357e.

    [3] Zhang, J., Wang, S., Xu, M., Wang, Y., Zhu, B., Zhang, S., & Wu, S. (2009). Hierarchically Porous ZnO Architectures for Gas Sensor Application. Crystal Growth & Design, 9(8), 3532–3537. https://doi.org/10.1021/cg900269a.

    [4] Wang, L., Lou, Z., Fei, T., & Zhang, T. (2012). Templating
    synthesis of ZnO hollow nanospheres loaded with Au nanoparticles and their enhanced gas sensing properties. Journal of Materials Chemistry, 22(11), 4767-4771.https://doi.org/10.1039/c2jm15342d.

    [5] Na, C. W., Woo, H.-S., Kim, I.-D., & Lee, J.-H. (2011). Selective detection of NO2 and C2H5OH using a Co3O4-decorated ZnO
    nanowire network sensor. Chemical Communications, 47(18), 5148-5150.https://doi.org/10.1039/c0cc05256f.

    [6] Wen, W., Wu, J.-M., & Wang, Y.-D. (2013). Gas-sensing property of a nitrogen-doped zinc oxide fabricated by combustion synthesis. Sensors and Actuators B: Chemical, 184, 78–84. https://doi.org/10.1016/j.snb.2013.04.052.

    [7] Jayakrishnan, R., & Hodes, G. (2003). Non-aqueous
    electrodeposition of ZnO and CdO films. Thin Solid Films,
    440(1-2), 19–25. https://doi.org/10.1016/S0040-6090(03)00811-3.

    [8] Kanjwal, M. A., Barakat, N. A. M., Sheikh, F. A., & Kim, H. Y. (2009). Electronic characterization and photocatalytic properties of TiO2/CdO electrospunnanofibers. Journal of Materials Science, 45(5), 1272–1279. https://doi.org/10.1007/s10853-009-4078-3.

    [9] Karami, H. (2010). Investigation of sol-gel synthesized CdO-ZnO nanocomposite for CO gas sensing. Int. J. Electrochem. Sci, 5,
    720-730.

    [10] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A. (2004). Theoretical and Computational Aspects of Magnetic Organic Molecules. Gaussian Inc, Wallingford, CT.

    [11] Schlegel, H. B. (1982). Optimization of equilibrium geometries and transition structures. Journal of Computational Chemistry, 3(2), 214–218. https://doi.org/10.1002/jcc.540030212.

    [12] Scott, A. P., & Radom, L. (1996). Harmonic Vibrational
    Frequencies: An Evaluation of Hartree−Fock, Møller−Plesset,
    Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. The Journal of Physical
    Chemistry, 100(41), 16502–16513. https://doi.org/10.1021/ jp960976r.

    [13] Irikura, K.K. (2002). THERMO.PL, National Institute of Standards and Technology.

    [14] Andraud, C., Brotin, T., Garcia, C., Pelle, F., Goldner, P., Bigot, B., & Collet, A. (1994). Theoretical and experimental investigations of the nonlinear optical properties of vanillin, polyenovanillin, and bisvanillin derivatives. Journal of the American Chemical Society, 116(5), 2094–2102. https://doi.org/10.1021/ja00084a055.

    [15] Zhang, C. R., Chen, H. S., & Wang, G. H. (2004). Chem. Res. Chin, 20, 640-646.

    [16] Kleinman, D. A. (1962). Nonlinear Dielectric Polarization in
    Optical Media. Physical Review, 126(6), 1977–1979. https://doi.org/10.1103/PhysRev.126.1977.

    [17] Reed, A. E., & Weinhold, F. (1983). Natural bond orbital analysis of nearâ€Hartree–Fock water dimer. The Journal of Chemical
    Physics, 78(6), 4066–4073. https://doi.org/10.1063/1.445134.

    [18] Reed, A. E., & Weinhold, F. (1985). Natural localized molecular orbitals. The Journal of Chemical Physics, 83(4), 1736–1740. https://doi.org/10.1063/1.449360.

    [19] Reed, A. E., Weinstock, R. B., & Weinhold, F. (1985). Natural
    population analysis. The Journal of Chemical Physics, 83(2),
    735–746. https://doi.org/10.1063/1.449486.

    [20] Foster, J. P., & Weinhold, F. (1980). Natural hybrid orbitals.
    Journal of the American Chemical Society, 102(24), 7211–7218. https://doi.org/10.1021/ja00544a007.

    [21] Chocholoušová, J., Špirko, V., & Hobza, P. (2004). First local
    minimum of the formic acid dimer exhibits simultaneously red-shifted O–H⋯O and improper blue-shifted C–H⋯O hydrogen bonds. Phys. Chem. Chem. Phys., 6(1), 37–41. https://doi.org/10.1039/B314148A.

    [22] Fleming, I. (1976). Frontier Orbitals and Organic Chemical
    Reactions, John Wiley and Sons, New York, 5–27.

    [23] Diener, M. D., & Alford, J. M. (1998). Isolation and properties of small-bandgap fullerenes. Nature, 393 (6686), 668–671. https://doi.org/10.1038/31435.

    [24] Scrocco, E., & Tomasi, J. (1978). Electronic molecular structure, reactivity and intermolecular forces: a neuristic interpretation by means of electrostatic molecular potentials. In Advances in
    quantum chemistry, 11, 115-193. https://doi.org/10.1016/S0065-3276(08)60236-1.

    [25] Okulik, N., & Jubert, A. H. (2005). Theoretical analysis of the
    reactive sites of non-steroidal anti-inflammatory drugs. Internet Electronic Journal of Molecular Design, 4(1), 17-30.

    [26] Thul, P., Gupta, V. P., Ram, V. J., & Tandon, P. (2010). Structural and spectroscopic studies on 2-pyranones. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 75(1), 251–260. https://doi.org/10.1016/j.saa.2009.10.020.

    [27] Ott, J. B., & Boerio-Goates, J. (2000). Introduction. Chemical Thermodynamics: Principles and Applications, 1–36. https://doi.org/10.1016/B978-012530990-5/50002-X.

Downloads

How to Cite

Jawaher, R., R, I., S, K., Bharani, B., R, R., & S, J. D. (2018). Theoretical investigations of ZnO/CdO material – A DFT approach. International Journal of Advanced Chemistry, 6(1), 79-84. https://doi.org/10.14419/ijac.v6i1.9312

Received date: January 29, 2018

Accepted date: March 5, 2018

Published date: March 10, 2018