Synthesis, Characterization and Biological Evaluation of NovelMacrocyclic Metal ‎Complexes: Insights from Spectroscopic Analysis, Molecular Docking, Antioxidant Studies‎, andAntimicrobial Screening

Authors

  • Rajrani Gulia

    Department of Chemistry, Baba Mastnath University, Asthal Bohar, Rohtak-124021, India
  • Indu Sindhu

    Department of Chemistry, Baba Mastnath University, Asthal Bohar, Rohtak-124021, India
  • Anshul Singh

    Department of Chemistry, Baba Mastnath University, Asthal Bohar, Rohtak-124021, India
  • Neetu Patel

    Department of Chemistry, Awadhesh Pratap Singh University, Rewa, M.P. 486003, India

How to Cite

Gulia , R. ., Sindhu , I. ., Singh , A. ., & Patel , N. . (2025). Synthesis, Characterization and Biological Evaluation of NovelMacrocyclic Metal ‎Complexes: Insights from Spectroscopic Analysis, Molecular Docking, Antioxidant Studies‎, andAntimicrobial Screening. International Journal of Advanced Chemistry, 13(2), 7-18. https://doi.org/10.14419/xmh8yz53

Received date: June 15, 2025

Accepted date: July 14, 2025

Published date: July 20, 2025

DOI:

https://doi.org/10.14419/xmh8yz53

Keywords:

Macrocyclic Complexes; Antimicrobial; Antioxidant; Molecular Docking; Template Methodology

Abstract

Significant contributions to the development of inorganic chemistry were made by macrocyclic complexes. It has stimulated interest in the study of macrocyclic metal ‎complexes in the design and development of novel antibiotics. In this regard, a series of nine ‎novel macrocyclic complexes of Co(II), Ni(II), and Cu(II) were synthesized by a template approach ‎in a [2:1:2] ratio utilizing o-phenylenediamine and dicarboxylic acid. The newly designed ‎complex's structure has been verified by elemental analysis, Fourier transform infrared, UV-Visible, mass spectrometry, thermogravimetric (TG) analysis, and EPR studies. The Coats-Redfern method was employed for the evaluation of various thermodynamic parameters. Based on ‎the spectral studies distorted octahedral geometry has been proposed around the central metal ion ‎in the synthesized complexes. The synthesized complexes were evaluated against Gram-positive ‎bacteria [S. aureus, B. subtilis] and Gram-negative [E. coli, P. aeruginosa] along with fungal ‎strains [C. albicans and A. niger] to assist their antimicrobial potential by agar well diffusion ‎method. Furthermore, the complexes have also been examined for their antioxidant activity ‎utilizing the DPPH assay. Subsequently, molecular docking studies were performed using the Auto ‎Dock Vina programme to assess the biological significance of the synthesized complexes and ‎determine effective binding modes between different ligands and the receptor proteins. The ‎copper macrocyclic complexes demonstrated excellent biocidal action against the selected ‎microbes. Copper acetate exhibited the highest antioxidant potential. The obtained results revealed ‎that the synthesized macrocyclic complexes are potent for making them attractive metal-based ‎antimicrobial and antioxidant prototypes‎.

References

  1. Da Silva VS, Teixeira LI, do Nascimento E, Idemori YM, DeFreitas-Silva G, Appl Catal. A: Gen. 2014; 469: 124. https://doi.org/10.1016/j.apcata.2013.09.033.
  2. Da Silva VS, Idemori YM, DeFreitas-Silva G, Appl Catal. A: Gen. 2015; 498: 54. https://doi.org/10.1016/j.apcata.2015.03.022.
  3. Feng Z, Hao F, Liu P, Luo H, J Mol. Catal. A. Chem. 2015; 410: 221. https://doi.org/10.1016/j.molcata.2015.09.027.
  4. Zhou W, Chen D, Sun F, Qian J, He M, Chen Q, Tetrahedron Lett. 2018; 59: 949. https://doi.org/10.1016/j.tetlet.2018.01.094.
  5. Sindhu I, Singh A, Nanotechnology: A boon for the scientific domain, IIP Series, 2024; 3: 1-15. https://doi.org/10.58532/V3BECS22P1CH1.
  6. Singh A, Chaudhary A, Silicon 2019; 11. https://doi.org/10.1007/s12633-018-9971-4.
  7. Nath BD, Takaihi K, Ema T, Catal. Sci. and Technol. 2020; 10: 12. https://doi.org/10.1039/C9CY01894H.
  8. Singh A, Chaudhary A, Bioinorg. Chem. Appl. 2018; 3: 2467463. https://doi.org/10.1155/2018/2467463.
  9. El-Boraey HA, El-Gammal OA, Open Chem. J. 2018; 5: 51. https://doi.org/10.2174/1874842201805010051.
  10. Kumar S, Jha RR, Yadav S, Gupta R, New J. Chem. 2015; 39: 1. https://doi.org/10.1039/C4NJ01300J.
  11. Chaudhary A, Singh A, Int. J. Curr. Res. Med. Sci. 2017; 3: 60-74. https://doi.org/10.22192/ijcrms.2017.03.06.009.
  12. Tazin N, Ragole VD, Wankhede DS, Inorg. Nano-Met. Chem. 2019; 49: 291. https://doi.org/10.1080/24701556.2019.1661449.
  13. Sindhu I, Tomar R, Singh A, Solid base catalysts: Synthesis, characterization and applications, Wiley-VCH GmbH, 2024; 1-25. https://doi.org/10.1002/9783527846719.ch1.
  14. Chaudhary A, Singh A, Int. J. Adv. Res. 2016; 4: 1004-1015. https://doi.org/10.21474/IJAR01/1575.
  15. Singh A, Chaudhary A, J. Iran. Chem. Soc. 2019; 17: 1-11. https://doi.org/10.1007/s13738-019-01829-6.
  16. El-Boraey HA, El-Gammal OA, Spectrochim. Acta A. 2015; 138: 533. https://doi.org/10.1016/j.saa.2014.11.015.
  17. Shalini ASS, Amaladasan M, Prasannbalaji N, Revathi J, Muralithran G, Arabian J. Chem. 2019; 12: 1176. https://doi.org/10.1016/j.arabjc.2014.11.033.
  18. Bansal N, Dave S, Main Group MET. Chem. 2013; 36: 101. https://doi.org/10.1515/mgmc-2012-0074.
  19. Fahmi N, Upadhyay M, Sharma N, Belwal S, J. Chem. Res. 2020; 44: 336. https://doi.org/10.1177/1747519819893885.
  20. Corbin BD, Seeley EH, Raab A, Feldmann J, Miller MR, Torres VJKL, Anderson, Dattilo BM, Dunman PM, Gerads R, Caprioli RM, Nacken W, Chazin WJ, Skaar EP, Sci. 2008; 319: 962. https://doi.org/10.1126/science.1152449.
  21. Baliyan S, Mukherjee R, Priyadarshini A, Vibhuti A, Gupta A, Pandey RP, Chung-Ming Chang, Molecules 2022; 27: 1326. https://doi.org/10.3390/molecules27041326.
  22. Sharma OP, Bhat TK, Food Chem. 2009; 113: 1202. https://doi.org/10.1016/j.foodchem.2008.08.008.
  23. Chaudhary A, Singh A, J. Chem. 2017; 1: 1-19. https://doi.org/10.1155/2017/5936465.
  24. Nozha SG, Morgan SM, Ahmed SEA, El-Mogazy MA, Diab MA, El-Sonbati AZ, Abou-Dobara MI, J. Mol. Struc. 2021; 1127: 129525. https://doi.org/10.1016/j.molstruc.2020.129525.
  25. Mohamed GG, El-Sherif AA, Saad MA, El-Sawy SEA, Morgan SM, J. Mol. Liq. 2016; 223: 1311. https://doi.org/10.1016/j.molliq.2016.09.065.
  26. Trott O, Olson AJ, J. Comput. Chem. 2010; 31: 455. https://doi.org/10.1002/jcc.21334.
  27. Dilip CS, Sivakumar V, Prince JJ, Indian J. Chem. Technol. 2012; 19: 351.
  28. Singh DP, Malik V, Kumar R, Kumar K, Singh J, Russ. J. Coord. Chem. 2009; 35: 740. https://doi.org/10.1134/S1070328409100054.
  29. Katouah H, Hameed AM, Alharbi A, Alkhatib F, Shah R, Chem. Select, 2022; 5: 10256. https://doi.org/10.1002/slct.202002388.
  30. Masih I, Fahmi N, Rajkumar, J. Enzyme Inhib Med. 2013: 28: 33. https://doi.org/10.3109/14756366.2011.625022.
  31. Kamboj M, Jain K, Singh DP, Asian J. Chem. 2018; 30: 1431. https://doi.org/10.14233/ajchem.2018.20984.
  32. Sangwan V, Singh DP, Mater. Sci. Eng. C. 2019; 105: 110119. https://doi.org/10.1016/j.msec.2019.110119.
  33. Kamboj M, Singh DP, Singh AK, Chaturvedi D, J. Mol. Struc. 2020; 1207: 127602. https://doi.org/10.1016/j.molstruc.2019.127602.
  34. Singh DP, Sharma K, Parveen, Asian. J. Chem. 2014; 26: 376. https://doi.org/10.14233/ajchem.2014.15408.
  35. Jasim SA, Riadi Y, Majdi HS, Altimari US, RSC adv. 2022; 12: 17905. https://doi.org/10.1039/D2RA02587F.
  36. Horowitz HH, Metzger G, Anal. Chem. 1963; 35: 1464. https://doi.org/10.1021/ac60203a013.
  37. El-Sonbati AZ, El-Mogazy MA, Nozha SG, Diab MA, Abou-Dobara MI, Eldesoky AM, Morgan SM, J. Mol. Struct. 2022; 1248: 131498. https://doi.org/10.1016/j.molstruc.2021.131498.
  38. Sindhu I, Singh A, Deswal Y, Gupta NM, Chem. & Biodiv. 2024; 22(3): e202402619. https://doi.org/10.1002/cbdv.202402619.
  39. Shakir M, Bano N, Rauf MA, Owais M, J. Chem. Sci. 2017; 129: 1905. https://doi.org/10.1007/s12039-017-1398-8.
  40. Vashistha VK, Kumar A, Russ. J. Inorg. Chem. 2020; 54: 2028. https://doi.org/10.1134/S0036023620140077.
  41. Kumar A, Vashistha VK, Ahmed S, Ali A, Das DK, Anal. Bioanal. Electrochem. 2020; 12: 922.
  42. Ghassemzadeh M, Faghani F, Shirkhani S, Mohsenzadeh F, J. Mol. Struct. 2023; 1295: 136573. https://doi.org/10.1016/j.molstruc.2023.136573.
  43. Nitha LP, Aswathy R, Mathews NE, Kumari BS, Mohanan K, Spectrochim. Acta A 2014; 118: 154. https://doi.org/10.1016/j.saa.2013.08.075.
  44. Beyene BB, Mihirteu AM, Ayana MT, Yibeltal AW, Results Chem. 2020; 2: 100073. https://doi.org/10.1016/j.rechem.2020.100073.
  45. Sindhu I, Singh A, Res. Chem. Intermed. 2024; 50: 413-436. https://doi.org/10.1007/s11164-023-05179-0.
  46. Diab MA, Nozha SG, El-Sonbati AZ, El-Mogazy MA, Morgan SM, Appl. Organomet. Chem. 2019; 33: e5153. https://doi.org/10.1002/aoc.5153.
  47. El-Sonbati AZ, Diab MA, Morgan SM, Abou-Dobara MI, El-Ghettany AA, J. Mol. Struct. 2020; 1200: 127065. https://doi.org/10.1016/j.molstruc.2019.127065.
  48. Sindhu I, Singh A, Deswal Y, Kirar JS, Res. Chem. Intermed. 2025; 51: 839-873. https://doi.org/10.1007/s11164-024-05473-5.
  49. El-Sonbati AZ, Diab MA, Eldesoky AM, Morgan SM, Salem OL, Appl. Organomet. Chem. 2019; 33: e4839. https://doi.org/10.1002/aoc.4839.
  50. Sindhu I, Singh A, Biomet. 2024; 38: 297-320. https://doi.org/10.1007/s10534-024-00655-5.
  51. Bugalia S, Atal K, Dhayal Y, Phageria U, Antican. Pot. Macro Comp. 2025. https://doi.org/10.1021/bk-2025-1492.ch003.
  52. Yadav M, Yadav D, Singh DP, Kapoor JK, Appl. Organomet. Chem. 2025; 39: e7885. https://doi.org/10.1002/aoc.7885.
  53. Sindhu I, Singh A Deswal Y, Gupta NM, Appl. Organomet. Chem. 2025; 39: e70303. https://doi.org/10.1002/aoc.70303.
  54. Khaidir NS, Inrahim SS, Al-Naseeri A, J. Kufa Chem. Sci. 2025; 4: 537-556.

Downloads

How to Cite

Gulia , R. ., Sindhu , I. ., Singh , A. ., & Patel , N. . (2025). Synthesis, Characterization and Biological Evaluation of NovelMacrocyclic Metal ‎Complexes: Insights from Spectroscopic Analysis, Molecular Docking, Antioxidant Studies‎, andAntimicrobial Screening. International Journal of Advanced Chemistry, 13(2), 7-18. https://doi.org/10.14419/xmh8yz53

Received date: June 15, 2025

Accepted date: July 14, 2025

Published date: July 20, 2025