Evaluation of immobilization and hydrolytic properties of α-amylase onto ‎chitosan-PVA copolymer

Authors

  • Atul Assistant Professor of Chemistry, Department of Chemistry, Rajiv Gandhi Memorial Govt. College Jogindernagar, ‎ Mandi, Himachal Pradesh, India 175015
  • Inderjeet Kaur Department of Chemistry, H.P. University, Shimla, Himachal Pradesh, India 171005
  • Aarti Sharma Assistant Professor of Chemistry, Department of Chemistry, Rajiv Gandhi Memorial Govt. College Jogindernagar, ‎ Mandi, Himachal Pradesh, India 175015

How to Cite

Atul, Kaur, I., & Sharma, A. (2025). Evaluation of immobilization and hydrolytic properties of α-amylase onto ‎chitosan-PVA copolymer. International Journal of Advanced Chemistry, 13(1), 1-6. https://doi.org/10.14419/whw2ct15

Received date: March 22, 2025

Accepted date: April 14, 2025

Published date: April 28, 2025

DOI:

https://doi.org/10.14419/whw2ct15

Keywords:

Chitosan-PVA Copolymer; α-Amylase; Immobilization; Hydrolysis; Starch

Abstract

The immobilization of α-amylase onto the chitosan-PVA (Chs-co-PVA) copolymer was successfully achieved ‎through physical ad-sorption from its suspension in tris-HCl buffer (0.1 M, pH 8.0, with an activity of 2.89 U/mL). ‎The process resulted in a maximum protein binding efficiency of 79.28% at pH 8.0, with 20.72% of the enzyme ‎remaining unbound. The hydrolysis of starch by both free α-amylase and copolymer-bound α-amylase was ‎evaluated under various reaction conditions. It was found that the immobilized α-amylase exhibited enhanced ‎activity and stability compared to the free enzyme, particularly at elevated temperatures, extended incubation ‎times (50 minutes), and an optimal pH of 8.0. The presence of specific salt ions, including Mg²⁺, Co²⁺, Fe³⁺, Ca²⁺, K⁺, ‎Zn²⁺, Na⁺, Pb²⁺, Hg²⁺, and Cu²⁺, further improved the hydrolytic activity of the immobilized enzyme compared to the ‎free enzyme. Additionally, immobilized α-amylase also demonstrated greater thermo stability, reusability, and ‎storage stability‎.

References

  1. E.L. Bell, W. Finnigan, S.P. France et al. Biocatalysis, Nature Reviews Methods Primers, 46 (2021). https://doi.org/10.1038/s43586-021-00044-z.
  2. P. M. de Souza , P.O. Magalhães, Application of microbial α-amylase in industry – A review, Braz J Microbiol, 41(4) (2010) 850–861. https://doi.org/10.1590/S1517-83822010000400004.
  3. J.E. Nielsen 1, T.V. Borchert, Protein engineering of bacterial alpha-amylases, Biochim Biophys Acta, 1543(2) (2000) 253-274. https://doi.org/10.1016/S0167-4838(00)00240-5.
  4. S. Allan, B.F. Henrik. Recombinant alpha amylase mutants and their use in textile desizing, Starch liquification and washing, Int. Appl., 12(1997) 205-210.
  5. V L Sirisha , Ankita Jain , Amita Jain , Enzyme Immobilization: An Overview on Methods, Support Material, and Applications of Immobilized En-zymes, Advances in Food and Nutrition Research, 79(2016) 179-211. https://doi.org/10.1016/bs.afnr.2016.07.004.
  6. J. Jiang, Y. Chen, W. wang et.al. Synthesis of superparamagnetic carboxymethyl chitosan/sodium alginate nanosphere and its application for immo-bilizing α-amylase, Carbohydrate Polymers, 151( 2016) 600-605. https://doi.org/10.1016/j.carbpol.2016.05.112.
  7. M. Chaudhary, N. Rana, D. Vaidya et.al. Immobilization of Amylase by Entrapment Method in Different Natural Matrix, Int.J.Curr.Microbiol.App.Sci, 8(5) (2019) 1097-1103. https://doi.org/10.20546/ijcmas.2019.805.126.
  8. M. Cruz, K.Fernandes, C. Cysneiros et.al. Improvement of Starch Digestion Using α-Amylase Entrapped in Pectin-Polyvinyl Alcohol Blend, Bio-Med Research International, 9 ( 2015 ) Article ID 145903. https://doi.org/10.1155/2015/145903.
  9. V.Konovalova , K.Guzikevich , A. Burban et.al. Enhanced starch hydrolysis using α-amylase immobilized on cellulose ultrafiltration affinity mem-brane, Carbohydrate Polymers, 152 ( 2016) 710-717. https://doi.org/10.1016/j.carbpol.2016.07.065.
  10. A. Molenda, A. Kochanowski, A. Walaszek et.al. Immobilization of α-amylase on poly(vinylamine) and poly(vinylformamide) supports and its per-formance, Chemical Engineering Journal, 146(2003) 3, 515-519. https://doi.org/10.1016/j.cej.2008.11.009.
  11. M. A. USMAN, V. I. EKWUEME, T. O. ALAJE, et.al. Immobilization of α- Amylase on Mesoporous Silica KIT-6 and Palm Wood Chips for Starch Hydrolysis, Chemical and Process Engineering Research, 9 ( 2013).
  12. Barbara Krajewska, Application of chitin- and chitosan-based materials for enzyme immobilizations: a review, Enzyme and Microbial Technology, 35 (2004) 126-139. https://doi.org/10.1016/j.enzmictec.2003.12.013.
  13. Xuwei Chen, Wenjing Wang, Zhining Song and Jianhua Wang, Chitosan/carbon nanotube composites for the isolation of hemoglobin in the pres-ence of abundant proteins, Anal. Methods, 3 (2011) 1769–1773. https://doi.org/10.1039/c1ay05130j.
  14. S.L. Danishevskii, Toksikol. Vysokomolekul Mater-Khim. Syrya Ikh. Sin. Gos. Nowch. Issled.Inst.Polim.Plast.Mass, 94 (1966).
  15. D. Manohar , Ravi Shanker Babu , B. Vijaya et.al. A review on exploring the potential of PVA and chitosan in biomedical applications: A focus on tissue engineering, drug delivery and biomedical sensors, International Journal of Biological Macromolecules, 283 ( 2) (2024) 137318. https://doi.org/10.1016/j.ijbiomac.2024.137318.
  16. I. Kaur, R. Gupta, A. Lakhanpal, A. Kumar, Investigation of immobilization and hydrolytic properties of pectinase onto chitosan-PVA copolymer, International Journal of Advanced Chemistry, 2 (2) (2014) 117-123. https://doi.org/10.14419/ijac.v2i2.3046.
  17. A. Amani , S. T. Kalajahi , F. Yazdian et.al. Immobilization of urease enzyme on chitosan/polyvinyl alcohol electrospun nanofibers, Biotechnol Prog, 38(5) (2022). https://doi.org/10.1002/btpr.3282.
  18. U. D. Kamaci, A. Peksel, Fabrication of PVA-chitosan-based nanofibers for phytase immobilization to enhance enzymatic activity, International Journal of Biological Macromolecules, 164 (2020) 3315-3322. https://doi.org/10.1016/j.ijbiomac.2020.08.226.
  19. H. Kaur, S. Singh, S. Rode, et.al. Fabrication and characterization of polyvinyl alcohol-chitosan composite nanofibers for carboxylesterase immobi-lization to enhance the stability of the enzyme, Scientific Reports, 14 (19615) (2024). | https://doi.org/10.1038/s41598-024-67913-x.
  20. R. Dave and D. Madamwar, Ind. J. Biotech., 5, 368-372 (2006).
  21. A. B. Cigil, E. Cakmakci O. Danis, S. Demir and M. V. Kahraman, Che. Eng.Trans., (32), 1687-1692 (2013).
  22. Z. Baysal, Y. Bulut, M. Yavuz and Ç. Aytekin, Starch-Stӓrke, 66(5-6) (2013), 484-490. https://doi.org/10.1002/star.201300133

Downloads

How to Cite

Atul, Kaur, I., & Sharma, A. (2025). Evaluation of immobilization and hydrolytic properties of α-amylase onto ‎chitosan-PVA copolymer. International Journal of Advanced Chemistry, 13(1), 1-6. https://doi.org/10.14419/whw2ct15

Received date: March 22, 2025

Accepted date: April 14, 2025

Published date: April 28, 2025