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Abstract 
 

Topological indices have been used to modeling biological and chemical properties of molecules in quantitive structure property rela-

tionship studies and quantitive structure activity studies. All the degree based topological indices have been defined via classical degree 

concept. In this paper we define a novel degree concept for a vertex of a simple connected graph: R degree. And also we define R 

indices of a simple connected graph by using the R degree concept. We compute the R indices for well-known simple connected graphs 

such as paths, stars, complete graphs and cycles. 
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1. Introduction 

Graph theory has many applications to modeling real world situa-

tions from the basic sciences to engineering and social sciences. 

Chemical graph theory has an important effect on the development 

of the chemical sciences by using topological indices. A topological 

index, which is a graph invariant it does not depend on the labeling 

or pictorial representation of the graph, is a numerical parameter 

mathematically derived from the graph structure. The topological 

indices of molecular graphs are widely used for establishing corre-

lations between the structure of a molecular compound and its phys-

icochemical properties or biological activity. These indices are used 

in quantitive structure property relations (QSPR) research. Topo-

logical indices are important tools for analyzing some physico-

chemical properties of molecules without performing any experi-

ment. The first distance based topological index was proposed by 

(Wiener 1947) for modeling physical properties of alcanes, and af-

ter him, hundred topological indices were defined by chemists and 

mathematicians and so many properties of chemical structures were 

studied. More than forty years ago (Gutman & Trinajstić 1971) de-

fined Zagreb indices which are degree based topological indices. 

These topological indices were proposed to be measures of branch-

ing of the carbon-atom skeleton in (Gutman et al. 1975). The 

Randic and Zagreb indices are the most used topological indices in 

chemical and mathematical literature so far. For detailed discus-

sions of both these indices and other well-known topological indi-

ces, we refer the interested reader [4-14] and [33-38] and references 

therein. In 1998, Estrada et al modelled the enthalpy of formation 

of alkanes by using atom- bond connectivity(ABC) index [15]. The 

ABC index for a connected graph G defined as; 

 

ABC(G) = ∑ √
deg(u)+deg(v)−2

deg(u)×deg⁡(v)uv∈E(G)                                           (1) 

 

There are many open problems related to ABC index in the 

mathematical chemistry literature. We refer the interested reader 

the sudies of the last two years [16-20]. 

 In 2009, Vukičević and Furtula defined geometric-arithmetic(GA) 

index and compared GA index with the well-known Randić index 

[21]. The authors showed that the GA index give better correlation 

to modelling standard enthalpy of vaporization of octane isomers. 

The GA index for a connected graph G defined as; 

 

GA(G) = ∑
2√deg⁡(u)×deg⁡(v)

deg(u)+deg⁡(v)uv∈E(G)                                               (2) 

 

After that many studies related to GA index were conducted in view 

of mathematical chemistry and QSPR researches [22-26].  

The harmonic index was defined by Zhong in 2012 [27]. The H 

index for a connected graph G defined as; 

 

H(G) = ∑
2

deg(u)+deg⁡(v)uv∈E(G) ⁡                                                   (3) 

 

The relationships between harmonic index and domination like 

parameters were investigated by Li et al. [28] We refer the 

interested reader for the article related to H index by Ilić and the 

references therein [29].  

The sum-connectivity index (χ) were defined by Zhou and 

Trinajstić in 2009 [30]. The χ index for a connected graph G defined 

as; 

 

χ(G) = ∑ (deg(u) + deg(v))−1 2⁄
uv∈E(G)                                     (4) 

 

(Farahani 2015) computed the sum-connectivity index of carpa 

designed cycle [31] and (Akhter et al. 2016) investigated the sum-

connectivity index of cacti [32]. 

As of now in the chemical and mathematical literature all degree 

based topological indices have been defined by using classical de-

gree concept.  

In this study our aim is to define a novel degree concept namely, R 

degrees. Also by using R degrees, we define the first, the second 

and the third R indices for a simple connected graph.  
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2. R Degrees and R indices 

In this section we give basic definitions and facts about above men-

tioned graph invariants. A graph G = (V, E)  consists of two 

nonempty sets V⁡and 2-element subsets of V namely⁡E. The ele-

ments of V  are called vertices and the elements of E  are called 

edges. For a vertex⁡v, deg⁡(v) show the number of edges that inci-

dent to v. the set of all vertices which adjacent to v is called the 

open neighborhood of v and denoted by⁡N(v). If we add the vertex 

v to⁡N(v), then we get the closed neighborhood of v,N[v].  
For a vertex⁡v, Sv = ∑ deg(u)u∈N(v) . For conveince, we name Sv 

as “the sum degree of v” or briefly “sum degree”. For a vertex⁡v, 

Mv = ∏ deg(u)u∈N(v) . For conveince, we name Mv as “the multi-

plication degree of v” or briefly “multiplication degree”.  

 

Definition 2.1: The R degree of a vertex 𝑣 of a simple connected 

graph 𝐺 defined as; 

 

r(v) = Mv + Sv                                                                            (5) 

 

Definition 2.2: The first R index of a simple connected graph 𝐺 de-

fined as; 

 

R1(G) = ∑ r(v)2v∈V(G)                                                                  (6) 

 

Definition 2.3: The second R index of a simple connected graph 𝐺 

defined as; 

 

R2(G) = ∑ r(u)r(v)uv∈E(G)                                                          (7) 

 

Definition 2.4: The third R index of a simple connected graph 𝐺 

defined as; 

 

R3(G) = ∑ [r(u) + r(v)]uv∈E(G)                                                    (8) 

 

Proposition 2.6: Let Kn be a complete graph with n vertices (n ≥
3). Then; 

 

a) R1(Kn) = n. (⁡(n − 1)2((n − 1)n−3 + 1))
2
 

 

b) R2(Kn) =
1

2
n(n − 1)5((n − 1)n−3 + 1)2 

 

c) R3(Kn) = n(n − 1)3((n − 1)n−3 + 1) 
 

Proof: Let v ∈ Kn . Then Sv = (n − 1)(n − 1) = (n − 1)2  and 

Mv = (n − 1)n−1 . Therefore r(v) = |Mv + Sv| = (n − 1)2((n −
1)n−3 + 1). We can begin to compute since all the vertices of com-

plete graph have same R degree. 

 

a) R1(Kn) = ∑ r(v)2v∈V(Kn) = n. (⁡(n − 1)2((n − 1)n−3 +

1))
2
 

b) R2(Kn) = ∑ r(u)r(v)uv∈E(Kn) =
n(n−1)

2
(⁡(n − 1)2((n −

1)n−3 + 1))
2

 

 

                           =
1

2
n(n − 1)5((n − 1)n−3 + 1)2  

c) R3(Kn) = ∑ [r(u) + r(v)] =uv∈E(Kn)
n(n−1)

2
2(n − 1)2((n −

1)n−3 + 1) 
 
                           = n(n − 1)3((n − 1)n−3 + 1)  
 

Proposition 2.7: Let Cn be a cycle graph with n vertices (n ≥ 3). 

Then;  

a) R1(Cn) = 64n 

b) R2(Cn) = 64n 

c) R3(Cn) = 16n 

Proof: Let v ∈ Cn . Then Sv = 2 + 2 = 4  and Mv = 2.2 = 4 . 

Therefore r(v) = |Mv + Sv| = 8 and . We can begin to compute 

since all the vertices of cycle graph have same R degrees. 

 

a) R1(Cn) = ∑ r(v)2v∈V(Cn) = 64n 

 

b) R2(Cn) = ∑ r(u)r(v)uv∈E(Cn) = 64n 

 

c) R3(Cn) = ∑ [r(u) + r(v)] =uv∈E(Cn) 16n 

 

Proposition 2.8: Let Pn  be a path graph with n vertices (n ≥ 3). 

Then; 

 

a) R1(Pn) = n + 5 2⁄  

 

b) R2(Pn) = n + 1 

 

c) R3(Pn) = 2n − 10 3⁄  

 

Proof: Let V(Pn) = {v1, v2, … , vn}  and E(Pn) =
{v1v2, v2v3, … , vn−2vn−1, vn−1vn}. Then Sv1 = Svn = 2 and⁡Mv =

2. Therefore⁡r(v1) = r(vn) = 4. Also Sv2 = Svn−1 = 3 and Mv2 =

Mvn−1 = 2  . Therefore r(v1) = r(vn) = 5  and Sv3 = Sv4 = ⋯ =

Svn−3 = Svn−2 = 4  and Mv3 = Mv4 = ⋯ = Mvn−3 = Mvn−2 = 4  . 

Therefore r(v3) = r(v4) = ⋯ = r(vn−3) = r(vn−2) = 8 . Note 

that Pn has n-vertex and n − 1 edges. We can begin our computa-

tions. 

 

a) R1(Pn) = ∑ r(v)2v∈V(Pn) = 2. 52 + (n − 2). 64 = 64n −

78 

 

b) 𝑅2(𝑃𝑛) = ∑ 𝑟(𝑢)𝑟(𝑣)𝑢𝑣∈𝐸(𝑃𝑛) = 2.5.8 + (n − 3). 64 =

64n − 112 

 

c) R3(Pn) = ∑ [r(u) + r(v)] =uv∈E(Pn) 2.13 + (n − 3). 16 =

16n − 22 

 

Proposition 2.8: Let Sn  be a star graph with n vertices (n ≥ 3). 

Then; 

 

a) R1(Sn) = n2 

 

b) R2(Sn) = 2n(n − 1)2 

 

c) R3(Sn) = (n − 1)(3n − 2) 
 

Proof: There are two kinds of vertices. For the central vertex v, 

deg(v) = n − 1 and for any pendent vertex u, deg(u) = 1.⁡Then 

Sv = n − 1 and Mv = 1. Also for any pendent vertex u, Su = n −
1 and Mu = n − 1. Therefore r(v) = n. Also r(u) = 2n − 2. 
Note that Sn has n-vertex and n − 1 edges. We can begin our com-

putations. 

 

a) R1(Sn) = ∑ r(v)2v∈V(Sn) = n2 

 

b) R2(Sn) = ∑ r(u)r(v)uv∈E(Sn) = 2n(n − 1)2 

 

c) R3(Sn) = ∑ [r(u) + r(v)] =uv∈E(Sn)
(n − 1)(3n − 2) 

3. Conclusion 

There are many problems for further study about the R indices. The 

mathematical properties and relations between R indices and other 

topological indices are interesting problems worth to study. Also, 

QSPR analysis of R indices may be attract the attention of some 

mathematical chemists. 
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