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Abstract 
 

In the current research, ATR–FTIR and FT–Raman spectroscopies was used to investigate the effect of concentration on IR and Ra-

man intensities and shifts of symmetric vibration modes of Ozone diluted by Cumene. The symmetric vibration mode of Ozone was 

observed at IR and Raman shifts of 850 and 975 cm-1, respectively. By reducing the concentration of Ozone, its intensity also was 

reduced and the symmetric vibration mode of Cumene was observed at IR and Raman shifts of 1050 and 1185 cm-1, respectively. 

The concentration has not influence on IR and Raman shifts of vibration modes. The experimental results were confirmed the linear 

dependency of IR and Raman intensities to the concentration of sample. 

 

 
 

Ozone molecule (left illustration) and Cumene molecule (right illustration) (Santiago-López et al. 2010; Guevara-Guzmán et al. 

2009; Pereyra-Muñoz et al. 2006; Foucaud et al. 2006; Elsayed 2001; van Hoof et al. 1997; Chrostowski et al. 1983; Boehme et al. 

1992; Catalá et al. 2013; Balvers et al. 1992; Marker et al. 1986). 
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1. Introduction 

When laser light strikes to a sample, some part of incident light 

diffract. In the diffracted light, in addition to the frequency of 

incident light (Rayleigh diffraction), some rays observe at differ-

ent frequencies which named as Raman diffraction. The frequency 

difference between incident and diffracted lights depends on vi-

bration frequency of molecular bonds of materials. In ATR–FTIR 

and FT–Raman spectroscopies with recording the diffraction 

amount in each frequency, it is possible to find the molecular 

structure of materials and hence, ATR–FTIR and FT–Raman spec-

troscopies can be used as finger print of materials (Santiago-López 

et al. 2010; Guevara-Guzmán et al. 2009; Pereyra-Muñoz et al. 

2006; Foucaud et al. 2006; Elsayed 2001; van Hoof et al. 1997; 

Chrostowski et al. 1983; Boehme et al. 1992). Non destructivity 

and no need to sample preparation are the most important ad-

vantages of ATR–FTIR and FT–Raman spectroscopies (Catalá et 

al. 2013; Balvers et al. 1992; Marker et al. 1986; Isac-García et al. 

2016; Anastas and Hammond 2016; Rodriguez-Reinoso and Sil-

vestre-Albero 2016).  

http://creativecommons.org/licenses/by/3.0/
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Ozone (O3) is a linear, axisymmetric triatomic molecule with 

symmetry point of hD  (Ben Fredj et al. 2015; Gueneron et al. 

2015). This molecule has four vibration modes that only one of 

them is symmetric and active in Raman. Its other vibration modes 

are active in IR (Babalou et al. 2015; Mattila et al. 2015). Cumene 

molecule (C9H12) with cyclic structure is belonged to symmetry 

group of 6hD . This molecule has 57 vibration modes that only 7 

of them are active in IR and Raman and the remaining are active 

modes in ATR–FTIR and FT–Raman spectroscopies due to high 

symmetry of this molecule (Landaeta and Rodríguez-Lugo 2015; 

Ebnesajjad 2015).  

In the current research, ATR–FTIR and FT–Raman spectroscopies 

was used in order to evaluate the effect of concentration on IR and 

Raman intensities and shifts of symmetric vibration modes of 

Ozone diluted by Cumene. The symmetrical vibration modes of 

Ozone and Cumene were observed at IR and Raman shifts of 850 

and 975 cm-1, respectively, and the effect of Ozone concentration 

on the intensity of these vibration modes was investigated. Fur-

ther, the influence of sample concentration on the change of IR 

and Raman shifts of vibration modes was studied. 

2. Materials, research method and experi-

mental techniques 

To perform this research, liquid O3 and C9H12 with 99% purity 

made by Sigma–Aldrich Co. were prepared. The liquid C9H12 was 

used as diluent for changing the O3 concentration and its concen-

tration was changed between 35% and 100% with incremental 

steps of 35%. ATR–FTIR and FT–Raman spectroscopies ar-

rangement is shown in Figures (1) and (2). As Raman diffraction 

happens for only one of ten millions incident photons, sensitive 

and accurate optical apparatuses are needed in the arrangement. In 

this test, the second harmonic continuous laser Nd:YAG with 

power of 75 mW is used. A passing filter was inserted after laser 

to reduce spectroscopic width of incident ray. Then, laser ray was 

focused on quartz cell containing the sample using L1 lens (f=60 

mm) and the diffracted light from it was collected at 90 degrees 

angle by L2 lens (f=35 mm) before entering to notch filter. As 

Raman diffraction intensity is very weaker than Rayleigh diffrac-

tion, notch filter was used to remove elastic Rayleigh diffraction. 

The diffracted light from L2 lens (f=35 mm) was focused on opti-

cal fiber of spectroscope and was detected by CCD after separa-

tion. Spectra of samples were recorded in the spectral range of 0–

4000 cm-1 and with separation accuracy of 17.4 cm-1. 

3. Results and discussion 

ATR–FTIR and FT–Raman spectra of liquid O3 for six different 

concentrations are shown in Figures (3) and (4). OriginPro 9.1 

software was used to draw the spectra. 

 

 

 
Fig. 1: Schematic View of ATR–FTIR Spectroscopy Arrangement. 

 

 
Fig. 2: Schematic View of FT–Raman Spectroscopy Arrangement. 
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Fig. 3: ATR–FTIR Spectrum at Various Concentrations of O3. 

 

 
Fig. 4: FT–Raman Spectrum at Various Concentrations of O3. 

 

According to these Figures, symmetric vibration mode of O3 is 

observed at IR and Raman shifts of 850 and 975 cm-1 respectively 

and its intensities is increased with increase in concentration of 

O3. At the other hand, by reducing the concentration of C9H12 at 

the solution, the intensity of peak point related to Raman shift of 

symmetric vibration mode of the liquid is reduced at wavenumber 

of 1050 and 1185 cm-1, respectively. 

As none of studied samples have no active IR and Raman modes 

in wavenumber ranges from 200–1200 cm-1, the observed peaks in 

this region are not related to the studied samples. Regarding the 

fact that the cell is made from quartz and the strongest IR and 

Raman vibration modes are in this range, it can be concluded that 

the observed peaks are related to quartz. It should be noted that the 

intensity of these peaks are increased by increasing the concentra-

tion of O3. The wide–band incident laser leads to widening the 

vibration mode peak of 850 and 975 cm-1 respectively for O3 and 

by placing the vibration modes of quartz on the flange of the 

above wide–band vibration mode in various concentrations, the 

intensity of these modes also increase by increasing the concentra-

tion of O3. In the wavenumber ranges from 500–2500 cm-1, the 

irregularities in the spectrum are related to the noise of spectro-

scope which superposition of spectrum of various samples with 

changing the concentration approves this issue. Although Cumene 

has some active IR and Raman vibration modes in this region, the 

peaks have not been observed due to the very small diffraction 

cross section of these modes compared to the detected vibration 

modes.  

In the spectra shown in Figures (3) and (4) for symmetric vibra-

tion modes of O3 at 850 and 975 cm-1 respectively and also C9H12 

at 1050 and 1185 cm-1 respectively, there is not any considerable 

shift for wavenumber by changing the concentration of samples. 

This is in good agreement with the results obtained by other re-

searchers (Santiago-López et al. 2010; Guevara-Guzmán et al. 

2009; Pereyra-Muñoz et al. 2006; Foucaud et al. 2006; Elsayed 

2001; van Hoof et al. 1997; Chrostowski et al. 1983; Boehme et 

al. 1992; Catalá et al. 2013; Balvers et al. 1992; Marker et al. 

1986; Isac-García et al. 2016; Anastas and Hammond 2016; Ro-

driguez-Reinoso and Silvestre-Albero 2016; Ben Fredj et al. 2015; 

Gueneron et al. 2015; Babalou et al. 2015; Mattila et al. 2015; 

Landaeta and Rodríguez-Lugo 2015; Ebnesajjad 2015).  

Therefore, the IR and Raman intensities for each vibration mode 

are a function of cross section of the mode with power two. The 

Raman diffraction cross sectional area for vibration mode of O3 at 

975 cm-1 is larger than the Raman diffraction cross sectional area 

for vibration mode of C9H12 at 1185 cm-1 and this is the reason for 

larger intensity of vibration mode for O3 than C9H12 in Figures (3) 

and (4). If the Raman diffraction cross sectional area and the in-

tensity of incident laser are constant, the intensities of IR and Ra-

man signals is directly related to the concentration of sample. The 

3D–variations of IR and Raman intensities of vibration modes for 

these two liquids as a function of concentration are shown in Fig-

ures (5) and (6). According to these Figures, the linear dependency 

of Raman intensity to concentration can be seen for both materi-

als.  
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(A) 

 
 

(B) 

 
Fig. 5: 3D–IR Intensities Elated To Vibration Modes of (A) O3 at 850 Cm-1 and (B) C9H12 at 1050 Cm-1 as a Function of Concentration. 

 

 

(A) 

 
 

(B) 
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Fig. 6: 3D–Raman Intensities Elated to Vibration Modes of (A) O3 at 975 Cm-1 and (B) C9H12 at 1185 Cm-1 as A Function of Concentration. 

 

4. Conclusion 

ATR–FTIR and FT–Raman spectroscopies are an applicable 

method for investigating the molecular structures and vibration 

modes of molecules. In the current research, IR and Raman inten-

sities of symmetric vibration modes for O3 at 850 and 975 cm-1 

respectively were increased by increasing the concentration of O3 

and the IR and Raman intensities of symmetric vibration modes 

for C9H12 at 1050 and 1185 cm-1 respectively were decreased by 

increasing the concentration of C9H12. If the Raman cross section-

al area and the intensity of incident laser are constant, the intensi-

ties of IR and Raman signals is directly related to the concentra-

tion of sample. The linear dependency to concentration was ob-

served for both samples. At the other hand, concentration has no 

effect on IR and Raman shifts of the considered vibration modes. 
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