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Abstract 
 

In the present work, we reviewed and report on the theoretical prediction of the longitudinal, transverse and average elastic wave veloci-

ties, and the Debye temperature for some nonmagnetic YX3 (X = In, Sn, Tl, and Pb) intermetallic compounds with stable cubic AuCu3-

type structure. The lattice parameters and the elastic constants used here are taken from the work of Abraham et al [1] using the general-

ized gradient approximation (PBE-GGA). Our results are analyzed and compared with the available theoretical and experimental data, 

and in general a good agreement is found. The deviation between our value (224.4 K) of the Debye temperature θD for YSn3 material and 

the experimental one (210 K) is around 6.62%, while the deviation between our result (1401 m/s) of the transverse elastic wave velocity 

for YTl3 intermetallic material and the calculated one (1470 m/s) is about 4.93%. In addition the Young’s Modulus and Poisson’s Ratio 

of YX3 intermetallic compounds for the crystallographic planes (100), (110) and (111) are predicted. 

 
Keywords: YX3 (X = In, Sn, Tl and Pb) Intermetallic Compounds; Elastic Wave Velocity; Debye Temperature; Microhardness. 

 

1. Introduction 

The Yttrium-based rare-earth intermetallic compoundsYX3 have been the subject of many theoretical and experimental investigations due 

to their extensive applications in the field of industry and technology [1-3]. Abraham et al. [1] have studied the structural, electronic, 

optical, elasticand thermal properties of the isostructural and isoelectronic nonmagneticYX3 (X = In, Sn, Tl, and Pb) intermetallic com-

poundsusing the density functional theory (DFT). They found that the calculated elastic constants satisfy the necessary mechanical stabil-

ity criterions, which indicate the stability of the four intermetallic compounds in AuCu3-type structure atambient conditions.  

Using the density functional theory (DFT) with the full-potential linear augmented plane wave (FP-LAPW) method, Ram et al. [2] have 

studied the electronic structure, Fermi surface, and elastic properties of LaSn3 and YSn3 intermetallic compounds. They found that the 

elastic constants increase with pressure for both compounds and satisfy the conditions for mechanical stability under pressure. 

Kawashimaet al. [3] found that all YX3 (X = In, Tl, and Pb) intermetallic compounds are superconductors with a superconducting transi-

tion temperature Tc of 0.78 K for YIn3, 1.5 K for YTl3, and 4.72 K for YPb3, respectively. 

Using the full-potential linear augmented plane wave (FP-LAPW) method, Ram et al. [4] have investigated the electronic structures, 

densities of states, Fermi surfaces and elastic properties of AB3 (A = Y, La; B = Pb, In, Tl) intermetallic compounds under pressure, 

while Cao et al. [5] have studied the electron-phonon interaction and superconductivity in representative AuCu3-type intermetallic com-

pounds using first-principles density functional theory (DFT) calculations. 

Many other theoretical works [6-10] have studied the masse density, the longitudinal, transverse andaverage elastic wave speeds as well 

as the Debye temperature of several alloys and compounds. 

In the present work, we reviewed and report on themasse density, the longitudinal, transverse andaverage elastic wave velocities, the 

Debye temperature,Vickers microhardness andthe universal anisotropy factor for AuCu3-type YX3 (X = In, Sn, Tl, and Pb) non magnetic 

intermetallic compounds using the lattice constants and the elastic constants of Abraham et al. [1].  

2. Theory, results and discussion 

The theoretical massedensity ρof a material is related to the chemical composition and crystal structure. It is obtained by dividing the 

mass of the atoms existing in the unit cell on the unit cell volume V. If the mass of the atoms is given in atomic mass unity (amu), it’s 

necessary to divide them by the Avogadro number NA. The relationship between density and crystal structure illustrates how the crystal 

chemistry can sometimes be used to predict the magnitude of a physical property [11]. The formula of the theoretical masse density is 

given by the following expression [11]: 
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ρ = MZ/NAV  (1) 

 

where M is the molecular weight, Z is the number ofmolecules per unit cell, NA is the Avogadro number (NA= 6.022 × 1023 mol−1), and 

V is the unit cell volume.  

For a triclinic crystal, the unit cell volume V is given by the following expression [11]:  

 

V = abc(1 − cos2α − cos2β − cos2γ )1/2  (2) 

 

where a, b, c are the cell dimensions and α, β, γ are the interaxial.  

For cubic AuCu3-type structure of YX3 (X = In, Sn, Tl, and Pb) intermetallic compounds, there is only one molecule which formed from 

4 atoms per unit cell (Z = 1), so the molecular density dM = 1/a3, where a is the lattice parameter. Specifically, the atoms on the cornerare 

shared by eight unit cells and so are counted as 1/8 in the unit cell, and the atoms on the face is shared by two unit cells and so are count-

ed as 1/2 in the unit cell. Hence, there are 8 x (1/8) + 6 x (1/2) atoms in cubic AuCu3-type structure unit cell. So, in the previous expres-

sion, the unit cell volume V = a3, where a is lattice parameter. 

The Debye temperature θD of crystal represents the highest mode of vibration, during phonon vibrations [12], θD is an important thermo-

dynamical quantity, which describe various physical properties of solid that are related to lattice vibrations [13], [14]. The Debye tem-

perature θD is usually calculated from the high capacity or from the elastic constants measurement [15-17]. Within the isotropic continu-

um approximation, the average sound velocity vm and the Debye temperature θD are related by [18]:  

 

mDDB vqk =
                                                                                                                                                                                               

(3) 

 

where ( ) 3/1
6 aD nq = , and na is the atom concentration.  

For more details on the calculation of the longitudinal vl, transverse vt and mean vm acoustic wave speeds of the aggregate polycrystalline 

solids, plrase see for example the Refrences [19-22].  

Using the lattice parameters and the elastic constants of Abraham et al [1], the values of the ρ, vl, vt, vm, and θD for YX3 (X = In, Sn, Tl, 

and Pb) materials are presented in Table 1. Meanwhile, our data are compared with the available theoretical [2, 4, 5] and experimental [3] 

results. We can see that YIn3 compound has the higher θD, indicating that this compound is most stiffened material than other ones.  

 
Table 1: Masse Density, Longitudinal, TransverseandAverage Elastic Wave Velocities, and Debye Temperature of YX3(X =In, Sn, Tl, And Pb) Interme-

tallic Compounds in Comparison with Other Available Theoretical [2], [4], [5] and Experimental [3] Data 

Material M (10-3 kg/mol) ρ (kg/m3) vl (m/s) vt (m/s) vm (m/s) θD(K) 

YIn3 433.366 7166 3692,3750 [4] 2100,2000 [4] 2334 237.4, 234.9 [4], 217 [5] 
YSn3 445.036 7032 3714,3590 [2] 2008,1630 [2] 2241 224.4, 188.4 [2], 210 [3], 172 [5] 

YTl3 702.046 10708 2690,2920 [4] 1401,1470 [4] 1568 155.2, 168.7 [4], 139 [5] 

YPb3 710.506 10121 2657,2750 [4] 1176,1160 [4] 1327 128.4, 129.8 [4], 101 [5] 

 

For YSn3 material, the deviation on the longitudinal elastic wave velocityvl between our result (3714 m/s) and that (3590 m/s) of Ram et 

al. [2] is only about 3.34%, and a good agreement is obtained. The deviation between our value (224.4 K) of the Debye temperature θD 

for YSn3 intermetallic material and the experimental one (210 K) [3] is around 6.62%. 

For monocrystalin material, the Young’s modulus and the Poisson’s ratio are related to the crystallographic directions [23]. The Young’s 

modulus and the Poisson’s ratio within the crystallographic planes (100), (110) and (111) for YX3 (X = In, Sn, Tl, and Pb) intermetallic 

compounds have be calculated using the expressions reported in Ref. [23] and in Table 3.13 (page 54) of Ref. [24]. The shame expres-

sions are successfully applied for K2TlAsX6 (X = Cl, Br) semiconducting materials [23]. The obtained values of the Young’s modulus 

and the Poisson’s ratio for YX3 (X = In, Sn, Tl, and Pb) materials are tabulated in Table 2. 

 
Table 2: Young’s Modulus and Poisson’s Ratio within the Crystallographic Planes (100), (110) and (111) for YX3(X =In, Sn, Tl, and Pb) Intermetallic 

Compounds, m Is the Direction for A Longitudinal Stress, While n Is the Direction for A Transverse Strain (Orthogonal to the Direction m) 

Parameter Plane Direction YIn3 YSn3 YTl3 YPb3 

Young’s modulus (GPa) (100) plane [001] direction 93.71 54.81 63.97 16.46 

 

 
 

 

Poisson’s ratio  

 

(110) plane 
 

(111) plane 
(100) plane 

 

(110) plane 
 

(111) plane 

[011] direction 

[001] direction 
[111] direction 

 
m = [010], n = [001] 

m = [011], n = [01̅1] 

m = [001], n = [11̅0] 

m = [11̅1], n = [11̅2̅]  

75.84 

93.71 
71.30 

75.84 
0.22 

0.37 

0.22 
0.29 

0.24 

76.71 

54.81 
88.49 

76.71 
0.35 

0.08 

0.35 
0.25 

0.35 

52.86 

63.97 
49.97 

52.86 
0.28 

0.41 

0.28 
0.33 

0.29 

37.46 

16.46 
65.18 

37.46 
0.45 

- 0.26 

0.45 
0.29 

0.59 

 

From the previous table, we can see for YIn3 compound that the maximum value Emax of Young's modulus was obtained at around 93.71 

GPa within (110) crystallographic plane and in [001] direction, while the minimum value Emin was obtained at around 71.3 GPa within 

(100) plane and in [111] crystallographic direction, which gives a ratio of Emax/Emin ≈ 1.31.  

There are different relationships frequently employed to predict the hardness H of the materials [25-30]. We calculate the Vickers micro-

hardness HV of YX3 (X = In, Sn, Tl, and Pb) materials using the following expression [31, 32]:  

 

HV = 0.92(G/B)1.137G0.708  (4) 

 

where G is the shear modulus and B is the bulk modulus.  

Our calculated values of the Vickers hardness HV are 5.58 GPa for YIn3, 4.25 GPa for YSn3, 3 GPa for YTl3 and 1.32 GPa for YPb3 in-

termetallic compound, respectively. To the best of author knowledge, there is no any data in the literature on the Vickers microhardness-

for YX3 (X = In, Sn, Tl, and Pb) intermetallic compounds to make comparaison. 
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To provide an accurate measure of anisotropy, the Zener anisotropy factor A was frequently used in cubic crystals [33], [34]. The univer-

sal anisotropy factor (AU) was often used to all the crystal symmetries, it is referred to as universal anisotropy factor; it can be written as: 

( ) ( ) 06//5 −+= RVRV

U BBGGA  [35-37]. For isotropic material, AU is zero [35]. The non-zero values: ~ 0.13 for YIn3, ~ 0.38 for YSn3, ~ 0.10 

for YTl3 and ~ 3.19 for YPb3, respectively of AU indicate the anisotropic nature of YX3 (X = In, Sn, Tl, and Pb) compounds, which be-

comes higher for YPb3 intermetallic compound. These results are in accord with the results of Aobtained by Abraham et al. [1]. 

3. Conclusion 

In conclusion, we reviewed and report on the longitudinal, transverse andaverage elastic wave velocities, and Debye temperature of YX3 

(X = In, Sn, Tl, and Pb) intermetallic compounds using the lattice parameters and the elastic constants obtained by Abraham et al.[1]. 

Our results are analyzed and compared with the available theoreticaland experimental data, and in general a good agreement is found. 

The deviation between our value (224.4 K) of θD for YSn3 material and the experimental one (210 K) is around 6.62%. In addition, we 

calculate the Vickers microhardness HV of YX3 (X = In, Sn, Tl, and Pb) intermetallic compounds, which are 5.58 GPa for YIn3, 4.25 GPa 

for YSn3, 3 GPa for YTl3, and 1.32 GPa for YPb3 compound, respectively. These results of the microhardness are in accord with the re-

sults of the Debye temperature, thus because in general, there is correlation between these two quantities. 
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