Evaluating The Applicability of Quantum Gravity Theory (QGT): A Comparative Analysis of NGC 2903, NGC 3198 And DDO 154
DOI:
https://doi.org/10.14419/005r6560Keywords:
Dark Matter Alternatives; Galaxy Dynamics; Quantum Gravity; Rotation Curves; NGC 2903; NGC 3198; DDO 154; NGC 6503.Abstract
The flat rotation curves of spiral and dwarf galaxies challenge Newtonian dynamics and motivate alternative theories beyond dark matter. Quantum Gravity Theory (QGT), which incorporates graviton-antigraviton interactions, has successfully explained the dynamics of NGC 3198 (a spiral galaxy) and DDO 154 (a dwarf galaxy) without the need for dark matter. Here, we extend QGT to the barred spiral galaxy NGC 2903 using THINGS HI data, performing a first comparative analysis across three galaxies with diverse masses and morphologies. We calculate gravitational scale-lengths ( ) and quantum-corrected velocities ( ) for NGC 2903 ( ), NGC 3198 ( ), and DDO 154 ( ). QGT reproduces all observed rotation curves with residuals <5 km/s and reduced chi-square values ( ) near 1.0. The scale-length scales linearly with the radial center of mass ( ), following , and such a relation holds across all tested galaxies. This study affirms QGT’s extensive applicability in describing galactic dynamics without the need for dark matter, successfully spanning a two-order-of-magnitude range in stellar mass.
QGT outperforms Modified Newtonian Dynamics (MOND) and dark matter models (NFW, Burkert, Einasto) in statistical tests, consistently achieving the lowest residuals, the lowest Bayesian Information Criterion (BIC) scores, and the best predictive accuracy, thus providing a robust framework for galactic dynamics.
References
- Athanassoula, E. (1992). The existence and shapes of dust lanes in galactic bars. Monthly Notices of the Royal Astronomical Society, Vol. 259, Issue 2, pp. 345-364. https://doi.org/10.1093/mnras/259.2.345.
- Begeman, K. G., Broeils, A. H., & Sanders, R. H. (1991). Extended rotation curves of spiral galaxies: Dark haloes and modified dynamics. Monthly Notices of the Royal Astronomical Society, Volume 249, Issue 3, pp. 523–537. https://doi.org/10.1093/mnras/249.3.523.
- Bell, E. F., & de Jong, R. S. (2001). Stellar Mass-to-Light Ratios and the Tully-Fisher Relation. The Astrophysical Journal, Volume 550, pp. 212-229. https://doi.org/10.1086/319728.
- Bullock, J. S., & Boylan-Kolchin, M. (2017). Small-scale challenges to the ΛCDM paradigm. Annual Review of Astronomy and Astrophysics. Vol. 55, pp. 343-387. https://doi.org/10.1146/annurev-astro-091916-055313.
- Burkert, A. (1995). The structure of dark matter halos in dwarf galaxies. The Astrophysical Journal. Vol. 447, L25. https://doi.org/10.1086/309560.
- Chemin, L., de Blok, W. J. G., & Mamon, G. A. (2011). Improved modelling of the mass distribution of disk galaxies by the Einasto halo model. The Astronomical Journal. Vol.142. Article No. 109. https://doi.org/10.1088/0004-6256/142/4/109.
- Clowe, D., Bradač, M., Gonzalez, A. H., et al. (2006). A direct empirical proof of the existence of dark matter. The Astrophysical Journal, Vol. 648, L109-L113. https://doi.org/10.1086/508162.
- Churazov, E., Vikhlinin, A., Zhuravleva, I., Schekochihin, A., Parrish, I., Sunyaev, R., Forman, W., Böhringer, H., Randall, S. (2012). X-ray surface brightness and gas density fluctuations in the Coma cluster. Monthly Notices of the Royal Astronomical Society, Vol. 421, Issue 2, pp. 1123–1135, https://doi.org/10.1111/j.1365-2966.2011.20372.x.
- de Blok, W. J. G., Walter, F., Brinks, E., et al. (2008). High-resolution rotation curves and galaxy mass models from THINGS. The Astronomical Journal, Vol.136, Issue 6, pp. 2648-2719. https://doi.org/10.1088/0004-6256/136/6/2648.
- de Blok, W. J. G., & McGaugh, S. S. (1998). Testing modified Newtonian dynamics with low surface brightness galaxies: Rotation Curve Fits. The Astrophysical Journal. Vol. 508, No.1, 132. https://doi.org/10.1086/306390.
- Famaey, B., & McGaugh, S. S. (2012). Modified Newtonian Dynamics (MOND): Observational Phenomenology and Relativistic Extensions. Liv-ing Reviews in Relativity. Vol.15. Article No. 10. https://doi.org/10.12942/lrr-2012-10.
- Forshaw, J. R., & Smith, A. G. (2009). Dynamics and Relativity. John Wiley & Sons, Chichester, UK. pp. 253-262. LCCN: 2008-053366.
- Gentile, G., Famaey, B., & de Blok, W. J. G. (2011). THINGS about MOND: A test of kinematic scaling relations in 26 dwarf-disk galaxies. As-tronomy & Astrophysics Vol.527, A76. https://doi.org/10.1051/0004-6361/201015283.
- Hoekstra, H., Bartelmann, M., Dahle, H., et al. (2013). Masses of galaxy clusters from X-ray Analysis. Space Science Reviews. Vol.177, pp. 119-154. https://doi.org/10.1007/s11214-013-9976-7.
- Karukes, E.V., Salucci, P., and Gentile, G., (2015) The dark matter distribution in the spiral NGC 3198 out to 0.22 Rvir. Astronomy & Astrophysics. Vol.578, Article No. A13, p. 8. https://doi.org/10.1051/0004-6361/201425339.
- Lelli, F., McGaugh, S. S., & Schombert, J. M. (2016). SPARC: A database of galaxy Spitzer Photometry and Accurate Rotation Curves. The As-tronomical Journal, Vol. 152, No. 6, pp. 157. https://doi.org/10.3847/0004-6256/152/6/157.
- Leroy, A. K., Walter, F., Brinks, E., et al. (2008). The star formation efficiency in nearby galaxies: Measuring where gas forms stars effectively. The Astronomical Journal, Vol. 136, No. 6, pp. 2782. https://doi.org/10.1088/0004-6256/136/6/2782.
- Milgrom, M. (1983), A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophysical Journal, Vol. 270, p. 365-370. https://doi.org/10.1086/161130.
- Murphy, J.D., Gebhardt, K., & Adams, J.J. (2011). Galaxy kinematics with virus-p: the dark matter halo of M87. The Astrophysical Journal, Vol. 729, No. 2, 129. https://doi.org/10.1088/0004-637X/729/2/129.
- Navarro, J. F., Frenk, C. S., & White, S. D. M. (1996). The structure of cold dark matter halos. Astrophysical Journal. Vol. 462, pp.563. https://doi.org/10.1086/177173.
- Oh, S.-H., de Blok, W. J. G., Brinks, E., Walter, F., & Kennicutt, R. C., Jr. (2011). Dark and luminous matter in THINGS dwarf galaxies. The As-tronomical Journal, Vol. 141, No. 6, 193. https://doi.org/10.1088/0004-6256/141/6/193.
- Oh, S.-H., Hunter, D. A., Brinks, E., et al. (2015). High-resolution mass models of dwarf galaxies from LITTLE THINGS. The Astronomical Jour-nal, Vol. 149. No. 6, Article No. 180. https://doi.org/10.1088/0004-6256/149/6/180.
- Planck Collaboration (2020)., Planck 2018 results. VI. Cosmological parameters, Astronomy and Astrophysics, Vol. 641, A6. https://doi.org/10.1051/0004-6361/201833910.
- Rovelli, C. (2004). Quantum Gravity. Cambridge: Cambridge University Press. ISBN: 9780511755804. https://doi.org/10.1017/CBO9780511755804.
- Rubin, V. C., Ford, W. K., Jr., & Thonnard, N. (1980). Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R=4kpc) to UGC 2885 (R=122kpc). Astrophysical Journal, Vol. 238, pp. 471-487. https://doi.org/10.1086/158003.
- Sanders, R. H. (1997). A stratified framework for scalar-tensor theories of modified dynamics. Astrophysical Journal, Vol. 480, Issue 2, pp. 492-502 https://doi.org/10.1086/303980.
- Umetsu, K. (2020). Cluster-Galaxy Weak Lensing. The Astronomy and Astrophysics Review. Volume 28, Issue 1, Article 7. https://doi.org/10.1007/s00159-020-00129-w.
- Van Albada, T. S., Bahcall, J. N., Begeman, K., & Sanscisi, R. (1985). Distribution of dark matter in the spiral galaxy NGC 3198. Astrophysical Journal, Vol. 295, p. 305-313 https://doi.org/10.1086/163375.
- Vikhlinin, A., Kravtsov, A., Forman, W., et al. (2006). Chandra sample of nearby relaxed galaxy clusters: Mass, gas fraction, and mass-temperature relation. The Astrophysical Journal, Vol. 640, No. 2, pp. 691-709. https://doi.org/10.1086/500288.
- Walter, F., Brinks, E., de Blok, W. J. G., et al. (2008). THINGS: The H I Nearby Galaxy Survey. The Astronomical Journal, Vol. 136, No. 6, pp. 2563-2647. https://doi.org/10.1088/0004-6256/136/6/2563.
- Weinberg, S. (1995), The Quantum Theory of Fields, Vol. 1: Foundations. Cambridge: Cambridge University Press. ISBN: 978-0521556026. https://doi.org/10.1017/CBO9781139644167.
- Wong W.H., Wong W.T., Wong W.K. & Wong L.M., (2014), Discovery of Antigraviton verified by the rotation curve of NGC 6503. International Journal of Advanced Astronomy, Vol. 2, No.1, 1-7. https://doi.org/10.14419/ijaa.v2i1.2244.
- Wong W.T. & Wong W.K., (2025a), Resolving NGC 3198’s Rotation Curve with Quantum Gravity Theory: A Dark Matter-Free Framework. Inter-national Journal of Advanced Astronomy, Vol.13, No.1, 18-20. https://doi.org/10.14419/08asxq90.
- Wong W.T. & Wong W.K., (2025b), Quantum gravity theory across galactic scales: a comparative study of NGC 3198 and DDO 154. International Journal of Advanced Astronomy, Vol.13, No.1, 21-24. https://doi.org/10.14419/mmcyrk75.
Downloads
How to Cite
Received date: April 29, 2025
Accepted date: June 10, 2025
Published date: June 12, 2025