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Abstract 
 

In this paper, restricted, three-body problem (RTBP) is generalised to study the non-linear stability of equilibrium points in the photo-

gravitational RTBP with P-R drag. In the present study, both primaries are considered as a source of radiation and effect of P-R drag. 

Hence the problem will contain four parameters q1, q2, W1 and W2. At first, the Lagrangian and the Hamiltonian of the problem were 

computed, then the Lagrangian function is expanded in power series of the coordinates of the triangular equilibrium points x and y. Last-

ly, diagonalized the quadratic term of the Hamiltonian of the problem, which is obtained by expanding original Lagrangian or Hamiltoni-

an by Taylor's series about triangular equilibrium point. Finally, the study concluded that the diagonalizable Hamiltonian is H2=ω1I1-ω2I2. 
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1. Introduction 

Poynting [8] investigated the effect of radiation pressure on the 

moving particle in Interplanetary space and stated that the particle 

such as meteors or cosmic dust are comparably affected by gravi-

tational and light radiation pressure force as they approach umi-

nous Celestial bodies. Robertson [10] modified Poynting theory in 

keeping with the principle of relativity. He considered only terms 

of first order in the ratio of velocity of the particle to that of light. 

The radiation force is given by, 

 

�⃗� = 𝐹𝑝 [
�⃗⃗�

𝑅
−

�⃗⃗�. �⃗⃗�

𝑐, 𝑅
−

�⃗⃗�

𝑐
] 

 

where, 𝐹𝑝 denotes the measure of the radiation pressure force, �⃗⃗� is 

the position vector of the particle with respect to the source, �⃗⃗� is 

the velocity vector and c is the velocity of the light. The first term 

in the above expression expresses the radiation pressure, the sec-

ond term expresses Doppler shift due to the motion of the particle 

and the third term is due to the absorption and subsequent re-

emission part of induced radiation. The last two terms constitute 

Poynting-Robertson (P-R) effect. Chernikov [2] described the 

photogravitational RTBP and dealt with Sun-planet-particle model 

and concludes that due to P-R drag triangular equilibrium points 

are unstable. Schuerman [11] studied classical RTBP by including 

radiation pressure and P-R effect. Murray [7] discussed the dy-

namical effect of drag in the planar circular RTBP. Ragos and 

Zafiropoulos [9] studied the existence and stability of equilibrium 

points for particle moving in the vicinity of two massive bodies, 

which exerts light radiation pressure with P-R drag numerically 

and concludes that none of the equilibrium points is stable. Ishwar 

[3] analyzed non linear stability in the generalized RTBP. Singh 

and Ishwar [12] examined the stability of triangular points in the 

generalised photogravitational RTBP by considering both prima-

ries as oblate spheroid and shown that triangular points are stable. 

Kushvah et al. [6] investigated non linear stability in the general-

ised photogravitational RTBP with P-R drag. Vivek Kumar Mish-

ra et al. [13] examined the stability of triangular equilibrium 

points in photogravitational elliptic RTBP with P-R drag. Jaiyeola 

Sefinat et al. [4] studied the stability of the photogravitational 

RTBP, when the primaries are considered to be oblate spheroid as 

well as sources of radiation. Vivek Kumar Mishra and Ishwar [14] 

examined the non-linear stability of triangular equilibrium points 

in the photogravitational elliptic RTBP with P-R drag. 

 

In this paper, the effect of P-R drag in the photogravitational 

RTBP is studied, when both primaries are intense emitter of radia-

tion. Hence the problem will contain four parameters q1, q2, W1 

and W2. Using the method described in Jorba [5], diagonalization 

of the quadratic part of the Hamiltonian of the photogravitational 

RTBP with P-R drag is carried out. 

2. Equations of motion and location of trian-

gular equilibrium points 

Equations of motion of infinitesimal mass are given by 

 

�̈� − 2�̇� = 𝑥 −
𝑞1(1−𝜇)(𝑥+𝜇)

𝑟1
3 −

𝑞2𝜇(𝑥+𝜇−1)

𝑟2
3

                          −
𝑊1

𝑟1
2 [

(𝑥 + 𝜇){(𝑥 + 𝜇)�̇� + 𝑦�̇�}

𝑟1
2 + �̇� − 𝑦]

                             −
𝑊2

𝑟2
2 [

(𝑥 + 𝜇 − 1){(𝑥 + 𝜇 − 1)�̇� + 𝑦�̇�}

𝑟1
2 + �̇� − 𝑦] ,
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�̈� − 2�̇� = 𝑦 −
𝑞1(1−𝜇)𝑦

𝑟1
3 −

𝑞2𝜇𝑦

𝑟2
3

                          −
𝑊1

𝑟1
2 [

𝑦{(𝑥 + 𝜇)�̇� + 𝑦�̇�}

𝑟1
2 + �̇� + 𝑥 + 𝜇]

                             −
𝑊2

𝑟2
2 [

𝑦{(𝑥 + 𝜇 − 1)�̇� + 𝑦�̇�}

𝑟1
2 + �̇� + 𝑥 + 𝜇 − 1] ,

 

 

where,  

                    𝑊1 =
(1−𝑞1)(1−𝜇)

𝐶𝑑
,       𝑊2 =

(1−𝑞1)𝜇

𝐶𝑑
, 

 

                  𝑟1
2 = (𝑥 + 𝜇)2 + 𝑦2   𝑎𝑛𝑑   𝑟2

2 = (𝑥 + 𝜇 − 1)2 + 𝑦2 

 

with Cd as the dimensionless velocity of light. 

 

The coordinates of the triangular equilibrium points, when the 

terms up to first order in q1, q2, W1 and W2 are considered, 

 

                 𝑥 =
𝛾

2
−

2

√3
𝑊1 (1 +

𝛾

2
) −

2

√3
𝑊2 (1 −

𝛾

3
) −

∈1

3
+

∈2

3
, 

 

                 𝑦 = ±{
√3

2
+

2

3
𝑊1 (𝛾 +

1

3
) +

2

3
𝑊2 (𝛾 −

1

3
) −

∈1

3√3
+

∈2

3√3
}, 

 

where, γ = 1-2μ  and  εi = 1-qi, for i  = 1, 2, as in Avdhesh Kumar 

et al. [1]. 

3. Diagonalization of Hamiltonian 

The Lagrangian function of the problem is 

 

𝐿 =
�̇�2 + �̇�2

2
+

𝑥2 + 𝑦2

2
+ 𝑥�̇� − �̇�𝑦 + 𝑞1

(1 − 𝜇)

𝑟1
+ 𝑞2

𝜇

𝑟2
 

         

                +𝑊1 [
(𝑥+𝜇) �̇�+𝑦�̇�

2𝑟1
2 − 𝑡𝑎𝑛−1 𝑦

𝑥+𝜇
]  

 

+𝑊1 [
(𝑥 + 𝜇 − 1) �̇� + 𝑦�̇�

2𝑟2
2 − 𝑡𝑎𝑛−1

𝑦

𝑥 + 𝜇 − 1
]. 

 

Now, shift the origin at the triangular equilibrium point L4. For 

that, change x ->x+a-µ and y ->y+b, so that 

 

                 𝑎 =
1

2
−

2

√3
𝑊1 (1 +

𝛾

2
) −

2

√3
𝑊2 (1 −

𝛾

3
) −

∈1

3
+

∈2

3
, 

 

                𝑏 =
√3

2
+

2

3
𝑊1 (𝛾 +

1

3
) +

2

3
𝑊2 (𝛾 −

1

3
) −

∈1

3√3
+

∈2

3√3
. 

 

Expanding L in power series of x and y, we get 

 

       L=L0+L1+L2+---------- 

 

Therefore, Hamiltonian 

 

     H=H0+H1+H2+---------- 

 

as 𝐻 = −𝐿 + 𝑝𝑥�̇� + 𝑝𝑦𝑦,̇  

 

where L0, L1, L2 are constant, first order, second order term respec-

tively and px, py are momenta coordinates given by   

 

𝑝𝑥 =
𝜕𝐿

𝜕�̇�
   𝑎𝑛𝑑   𝑝 =

𝜕𝐿

𝜕�̇�
. 

 

Second order Hamiltonian H2 is written as 

 

𝐻2 =
𝑝𝑥

2+𝑝𝑦
2

2
+ 𝑦𝑝𝑥 − 𝑥𝑝𝑦 + 𝐸𝑥2 + 𝐺𝑥𝑦 + 𝐹𝑦2,                         (1) 

where, 

 

         𝐸 =
127

2
+

76

√3
𝑊1(3𝛾 + 1) +

76

√3
𝑊2(3𝛾 − 1) 

 

                   −8 ∈1 (8 + 25𝛾) − 8 ∈2 (8 − 25𝛾), 
 

          𝐹 =
7

2
+ 16√3(𝑊1 + 𝑊2) − 2 ∈1 (1 − 3𝛾) − 2𝜖2(1 + 3𝛾), 

 

          𝐺 = −24√3𝛾 −
4

3
𝑊1(291 + 104𝛾) −

4

3
𝑊2(291 − 104𝛾) 

 

                   −
52

√3
∈1 (3 − 𝛾) +

52

√3
∈2 (3 + 𝛾). 

 

Now, follow the method described in Jorba [5] to find the real 

symplectic change of real linear form of Hamiltonian (1). For that 

purpose, find the characteristic vector of matrix M corresponding 

to 

�̇� = 𝑀𝑋                                                                          (2) 

 

where, 

 

�̇� = [

𝑥
𝑦
�̇�𝑥

�̇�𝑦

̇
̇

] ,    𝑀 = [

  0           1           1      0
−1           0           0      1
−2𝐸    − 𝐺          0      1
 −𝐺     − 2𝐹   − 1     0

]     𝑎𝑛𝑑  𝑋 = [

𝑥
𝑦
𝑝𝑥

𝑝𝑦

]. 

 

Suppose,  𝐴 = 𝑀 − 𝜆𝐼4
′ , where 𝐼4 

′  is the identity matrix of order 4. 

Hence, 

 

𝐴 = [

−𝜆           1           1      0
−1       − 𝜆           0      1
−2𝐸    − 𝐺     − 𝜆      1
 −𝐺     − 2𝐹   − 1   − 𝜆

]                                         (3) 

 

Clearly |𝐴| = 0  implies that the characteristic equation corre-

sponding to the Hamiltonian is given by 

 

𝜆4 + 2(𝐸 + 𝐹 + 1)𝜆2 + 4𝐸𝐹 − 𝐺2 − 2(𝐸 + 𝐹) + 1 = 0. 
 

Discriminant is given by 

 

𝐷 = 4(𝐸 + 𝐹 + 1)2 − 4(4𝐸𝐹 − 𝐺2 − 2𝐸 − 2𝐹 + 1) 

 

Stability is assured, when D>0 only. When D>0, the roots of the 

characteristic equation ±𝑖𝜔1 and ±𝑖𝜔2 are related to each other as 

 

𝜔1
2 + 𝜔2

2 = 2𝐸 + 2𝐹 + 2,                                                    (4)

 
 

 𝜔1
2𝜔2

2 = 4𝐸𝐹 − 𝐺2 − 2𝐸 − 2𝐹 + 1                                       (5) 

 

Substituting the values of E, F and G in equations (4) and (5) we 

get, 

 

𝜔1
2 + 𝜔2

2 = 136 +
8

√3
𝑊1(69𝛾 + 19) +

8

√3
𝑊2(69𝛾 − 19) 

 

                           −4𝜖1(33 + 97𝛾) − 4𝜖2(33 − 97𝛾), 

 

𝜔1
2𝜔2

2 = 756 − 304√3𝑊1(45 − 𝛾) − 304√3𝑊2(45 + 𝛾) 

 

                       −24 ∈1 (53 + 349𝛾) − 24 ∈2 (53 − 349𝛾). 
 

From the above two equations the values of ω1 and ω2 can be 

found out. 

To obtain the real linear form of the Hamiltonian, find out a real 

symplectic change of variable. For that purpose, obtain the charac-

teristic vectors of the matrix A as in Jorba [5]. 
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Let 𝐴 = [
𝐴𝜆

′        𝐼2
′

  𝐴′       𝐴𝜆
′    

]
,  

 

where, 𝐼2
′   is the identity matrix of order 2. 

 
 

Using  (3), we get  

 

                𝐴𝜆
′ = [

−𝜆        1
−1   − 𝜆

]  and   𝐴′ = [
−2𝐸     − 𝐺
−1      − 2𝐹

].
 

 

Since λ is the root of the matrix A, the Kernel of A is obtained by 

solving the matrix equation 

 

[
𝐴𝜆

′        𝐼2
′

  𝐴′       𝐴𝜆
′    

] [
𝑋1

𝑋2
] = [

0
0
] 

 

with 𝑋1 = [
𝑥
𝑦]  and  𝑋2 = [

𝑝𝑥

𝑝𝑦
]. 

 

This gives,

 
𝐴𝜆

′ 𝑋1 + 𝐼2
′𝑋2 = 0                                                               (6) 

 

𝐴′𝑋1 + 𝐴𝜆 
′ 𝑋2 = 0                                                           (7) 

 

From the above equations, we get 

 

[2𝐸 + 𝜆2 − 1               𝐺 − 2𝜆
2𝜆 + 𝐺              2𝐹 + 𝜆2 − 1

] . [
𝑥
𝑦] = [

0
0
], 

 

which gives either 

 

x=2λ-G,   y=λ2+2E-1                                                                   (8) 

 

or 

 

x=1-λ2-2F,  y=2λ+G                                                                    (9) 

 

Now, use any one set of x and y in (8) or (9). Suppose, if we use 

the second set of x and y given in equation (9) into (7), we get 

           

px=-λ3-2λF-λ-G                                                      (10) 

 

py=λ2+λG-2F+1                                                        (11) 

 

From the equations (9) to (11), the characteristic vector of the 

matrix A is 

 

[

𝑥
𝑦
𝑝𝑥

𝑝𝑦

] = [

1 − 𝜆2 − 2𝐹
2𝜆 + 𝐺

−𝜆3 − 2𝜆𝐹 − 𝜆 − 𝐺
𝜆2 + 𝜆𝐺 − 2𝐹 + 1

]

                                    

(12) 

 

If we substitute λ=iω into the above characteristic vector (12), and 

finding out the real and imaginary parts as u and v respectively, 

we get, 

 

              𝑢 = [

1 + 𝜔2 − 2𝐹
𝐺

−𝐺
−𝜔2 − 2𝐹 + 1

]  and  𝑣 = [

0
2𝜔

𝜔2 − 2𝜔𝐹 − 𝜔
𝜔𝐺

] 

 

Now, consider the matrix C=(v1, v2, u1, u2), where vi, ui for i=1, 2 

corresponds to v, u for frequencies ωi for i=1, 2. Hence, it is obvi-

ous that the symplectic change satisfy CTJ4C=J4.  

 

Substituting the expressions (2) and (3) in the above matrix equa-

tion CTJ4C=J4 and simplifying, we get 

 

𝐶𝑇𝐽4𝐶 = [
0        𝐷
−𝐷       0

], 

 

with 𝐷 = [
𝑑(𝜔1)           0

0           𝑑(𝜔1)   
], 

 

where, 

 

𝑑(𝜔) = 𝜔[𝜔4 + (2 − 4𝐹)𝜔2 + 𝐺2 + 4𝐹2 + 4𝐹 − 3]             (13)
 

 

to satisfy the symplectic property d(ω) =1.  

 

If d(ω) ≠1, then scale the column of  C  matrix by √𝑑(𝜔𝑘)  for 

k=1, 2 to obtain the symplectic matrix C. Hence, 

 

𝐶 = [
𝑣1

√𝑑(𝜔1)  
,

𝑣2

√𝑑(𝜔2)  
,

𝑢1

√𝑑(𝜔1)  
,

𝑢2

√𝑑(𝜔2)  
],   ie. 

 

𝐶 =

[
 
 
 
 
 
 
 
 
 
 
 0                              0            

1 − 2𝐹 + 𝜔1
2

√𝑑(𝜔1)  
 
1 − 2𝐹 + 𝜔2

2

√𝑑(𝜔1)  

2𝜔1

√𝑑(𝜔1)  
                   

2𝜔2

√𝑑(𝜔2)  
             

𝐺

√𝑑(𝜔1)  
   

𝐺

√𝑑(𝜔2)  

𝜔1
3 − 2𝐹𝜔1 − 𝜔1

√𝑑(𝜔1)  
  
𝜔2

3 − 2𝐹𝜔2 − 𝜔2

√𝑑(𝜔2)  
  

−𝐺

√𝑑(𝜔1)  
 

−𝐺

√𝑑(𝜔2)  

𝐺𝜔1

√𝑑(𝜔1)  
      

𝐺𝜔2

√𝑑(𝜔2)  
              

1 − 2𝐹 − 𝜔1
2

√𝑑(𝜔1)  
  
1 − 2𝐹 − 𝜔2

2

√𝑑(𝜔2)  ]
 
 
 
 
 
 
 
 
 
 
 

 

 

where, d(ωi) for i=1, 2 can be obtained from equation (13).  

Now, the matrix C is symplectic, but C to be real also. 

ie d(ωi)>0, for i=1, 2. This will determine the sign, to be chosen 

for the frequencies ωi, for i=1, 2.  

 

Since, 𝜔1
2 <

1

2
, and d(ω1)>0, it is necessary to take ω1>0 and con-

versely, as 𝜔2
2 <

1

2
, implies that ω2<0 in order to have d(ω2)>0. 

Hence the change obtained is real, symplectic and it brings the 

Hamiltonian (1) in to the normal form as in Jorba [5], 

 

 𝐻2 = 𝜔1 (
𝑥2+𝑝𝑥

2

2
) + 𝜔2 (

𝑦2+𝑝𝑦
2

2
)                      (14) 

 

Since, 

             𝐼1 =
𝑥2+𝑝𝑥

2

2
  and   𝐼2 =

𝑦2+𝑝𝑦
2

2
  are action variables, then 

Hamiltonian (14) becomes, 

 

H2=ω1I1-ω2I2                                                     (15) 

 

The Hamiltonian obtained in (15) is diagonalized form of the 

Hamiltonian (1). 

4. Conclusion 

The detailed analysis on non linear stability of triangular equilib-

rium point of the perturbations radiation pressure and P-R drag is 

performed. Digitalization of second order Hamiltonian is carried 

out and obtained H2=ω1I1-ω2I2, which is the required, diago-

nalizable Hamiltonian. 
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