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Abstract 
 

A new transformation law of coordinates is determined, which allows the inclusion of complex velocity vectors. It is found that in an 

isotropic universe which is filled with matter throughout, each frame can have references for its position of rest or of motion in a local-

ized domain wherein a frame at rest does not change its position with time relative to surroundings. However, in the system, the moving 

frame sees only a reflection of its own motion in the rest-frame to appear it moving in antipodal direction. It is therefore, the relative 

motion cannot be said to be a just direction reversal with two real velocities having a single magnitude common between them; however, 

it is a synthesis of both real and imaginary motions. The proposed transformation laws are similar to that of Lorentz under which vector 

quantities be in cross product or in dot product remain invariant such as Maxwell equations. However, inherent scalar quantities such as 

mass, time etc. vary to distinguish rest-frame from the moving one. It is seen that the physical processes are exactly the same as Einstein 

predicted but without reciprocity effects and thus provide a justification of quantization of red-shift and particle decay. These considera-

tions are useful in understanding the intricacies of the micro world such as short-lived particle, antimatter, subatomic particles, gamma 

rays, gamma-ray burst (GRBs), cosmic rays, dark matter, and asymmetry of Doppler’s shifting images. 
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1. Introduction 

Undoubtedly there is no absolute rest or absolute [1] motion in the 

real world; the rest and motion cannot even be relative terms in an 

isotropic universe which is filled with baryonic and non-baryonic 

matter throughout. They are relative terms only if the whole uni-

verse is assumed to be made up of mere two frames that do not 

incorporate any third reference point relative to which either of 

them can find it at rest [2] or in motion. Obviously in the absence 

of surroundings none of the frames can ascertain its state of rest if 

either one is in motion. Each will ascertain its state of rest by see-

ing the other one in motion. Since the magnitude is common be-

tween the two, both the frames are considered moving with the 

same magnitude but with opposite signs. This phenomenon is 

associated with a momentary illusion which is common in every-

day experience. An observer in stationary train feels his train mov-

ing if he sees the other moving train static passing through his 

train in the close proximity. However, in the same event at any 

moment if the observer feels his train static, he sees the moving 

train moving and not static. Thus this phenomenon is associated 

more with feel-like perceptions than with the true observations. 

These two diagonally opposite perceptions in the same event sig-

nify the smooth transition of states from rest to motion and vice 

versa for which it gives no justification of any external force that 

is indispensable for the interchangeability of states according to 

Newton’s first law [2]. Moreover, a single magnitude common 

between the two frames is shared by the same two frames for their 

two separate real velocities in the opposite directions in the same 

event at the same time. This momentary illusion does not last long 

because the moment the observer refers to surroundings this illu-

sion automatically disappears. Actually the relative motion always 

shows one type of motion only i.e. the two frames always move 

opposite to each other. They can never move in the same direc-

tions. If the two frames move in the same direction relative to 

third reference point, on withdrawing the reference point both the 

frames look moving opposite to each other.  

 It is often assumed that relative motion with constant velocity 

finds its practical motivation in reciprocal electrodynamics [3] 

action of a magnet and a conductor with a phenomenon of deflec-

tion in the galvanometer.  

The phenomenon is noticeable only when the magnet is partially 

or fully covered by a coil when either of them is in motion relative 

to other. The moment they get separated by a distance, though, 

they are still in relative motion; no phenomenon is noticed. Even 

in the case of phenomena better results of large deflections are 

obtained in accelerated mode only, wherein whether a magnet is 

dropped vertically downward as a free body generating an accel-

eration ‘g ‘ into the coil or rotor rotates between the magnets in 

dynamo or power generators.  

At last, to reach to conclusions and to make it generalize, we refer 

to everyday experiences that are not momentary but a reality and 

everlasting. Localized domain is the most practical approach to 

understand the phenomenon of relative motion wherein one frame 

is at rest relative to surroundings while the other frame moves 

with respect to it. When seen from the moving frame, the rest-

frame appears moving in antipodal direction. However, when 

moving frame refers to surroundings it concludes the phenomenon 

as a mere reflection of its own motion that it sees in the rest-frame 

for the rest-frame does not change its position relative to surround-

ing with time. Once it is established that with a single magnitude 

in the single event, only one frame can move with real velocity 

(+ve or –ve) and in the same event the other one only appears 

moving cannot have real velocity but imaginary; the results are 
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valid to make it generalize. So, mere appearance of motion shows 

that physical form (i.e. change in position with time) of the motion 

is nonexistent. For non-real values, we are privileged to have a 

mathematical tool i.e. 1i   . We therefore, use iv (an imaginary 

velocity [4] for an appearance of motion, just as the time is con-

ceived as imaginary length in four- dimensional space-time con-

tinuum because distance like form of time is non-existent. 

1.1. Non-inherent scalar and inherent scalar quantities 

Non-inherent scalar quantities are vectors, whether they are in 

cross or in dot product. Inherent scalar quantities are inborn scalar 

quantities such as mass, time, dimensions, etc., which are direc-

tionless. The basic principle of relativity is that one cannot feel 

any change by oneself without comparing it with the other in the 

other’s state. So any change increase or decrease in vectors will be 

direction reversal. For example, B recedes from A with v  veloc-

ity, if B feels motionless at any moment; to him A appears to re-

cede with v . If v  is an increase, v  will be a decrease in vec-

tor. So, from both the actions reciprocity is reflected because both 

feel receding. However, in inherent scalar quantities which are 

free from directions, any increase or decrease will only be in the 

magnitude of the quantities. For example, A at rest observes that B 

increases his mass while in motion however if B does not feel any 

change in him, to him mass of A at rest appears decreasing. Here 

inherent scalar quantities show de-reciprocity.  

1.2. A Brief discussion of the previous work 

In the previous paper [4] Lorentz, transformation was used where-

in the combination of iv and v was introduced to obtain mass ve-

locity relation in the form of 
4 4

0 2 2
( )

c v
m v m

c v





 (showing decre-

ment and increment in mass, i.e. de-reciprocity) and time dilation 

relation in the form of 
4 4

2 2

c v
t t

c v


  


 (showing time dilation 

with time concentration, i.e. de-reciprocity) [4]. The numerator 

exhibits decrement (relativistic decrease —
d

R ) while denominator 

shows increment (relativistic increase —
i

R  ) [5]the paper dis-

cussed the kinematic view of relativity. The new relation shows 

that 
i

R >
d

R  i.e. the moving mass is always greater than its rest 

mass proper corroborates Einstein’s prediction. However, at c

i
R   while 0

d
R   changing the final analysis of infinity to be 

indeterminate — the mass of photon at c . It is corroborated with 

past experiments where natural pions ( 0 ) when accelerated up to 

0.99975 c , finally they decay into gamma rays. Our theory inter-

prets this decay as pions jumping from 0.99975 c  to c to trans-

form them into photons. And 
h

mc
  (de Broglie) shows how 

shorter [5] and much shorter wavelengths are obtained, giving 

birth to gamma rays. Similarly, new relation of time dilation with 

time concentration upholds the asymmetry of Doppler’s shifted 

images, where blue shifted (fast aging) images received by the 

Ship and red-shifted (slow aging) images are received by Earth; 

otherwise, both should have been in the same color.  

Since, Lorentz transformation has its limitations as it finds its 

genesis in real velocities alone; modified transformation laws, 

which accommodates complex velocity vector are derived.  

2. Methodology of modified transformation 

laws (hypothesis) 

 

 
Nsss 

 
Fig. 1: A Fig. 1: B 

 

Let S  and S   be two inertial frames of reference (see Fig 1:A & 

1:B), S   having uniform velocity v  relative to S . Let two observ-

ers O  and O  observe any event P from systems S  and S   respec-

tively. For convenience let us consider that the X-axes of two sys-

tems coincide permanently and the velocity is parallel to X-axis. 

The event P is a light signal and is produced when both t  and t  

are zero and when origins of the two frames coincide. The event P 

is determined by co-ordinates ),,,( tzyx  and ),,,( tzyx   by ob-

serves O  and O  respectively.  

The light pulse produced at 0t  will spread out as a growing 

sphere and the radius of wave front produced in this way will 

grow with speed c, since ),,,( tzyx  are co-ordinates of the event 

from observer in system S  at rest, therefore, the equation of 

spherical surface whose radius grows at the speed c, is. 

 

2 2 2 2 2x y z c t   or
2 2 2 2 2 0x y z c t    [6]                       (1)        

Similarly for observer O  in system S   having the co-ordinates of 

P as ),,,( tzyx  , the equation of spherical surface is  

 
2 2 2 2 2' ' ' 'x y z c t   or

2 2 2 2 2' ' ' ' ' 0x y z c t                   (2)                    
c is considered constant according to special theory of relativity in 

all frames of references.  

As velocity of S  is only along X-axis: thus forms symmetry and 

 

'y y and 'z z                                                                           (3) 

 

Then from eq. (1) and (2) we have 

 
2 2 2 2 2 2( ' ' )x c t x c t                                                                       (4) 
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Now in frame S the position of O  relative to O  at any moment t  

is x vt  or 0x vt  while in frame S   the position of O  is

' 0x  . Here the transformation between 'x  and x  
 

Will be   ' ( )x k x vt                                                                 (5) 

 

k , being independent of x and t .  

Now according to the proposed definition of relative motion, 

frame S  appears to be moving in negative X-direction with iv  

velocity relative to S   because frame Sis at rest it can only appear 

to be moving from frame S   and that too till the frame S   will 

remain in motion. It is, therefore, the position of observer O  rela-

tive to O  at any time 't in frame S   will be  

 

' 'x ivt  or ' ' 0x ivt   .  

 

k being independent of 'x and 't .  

 

or ( ' ')x k x ivt                                                          (6)
 

 

Now substituting the value 'x of from Eq. (5) in Eq. (6) which on 

solving becomes  

 

2

1
' [ (1 )]

x
t k t

v k
  

                                                     (7) 

 

Now in eq. (4) on putting the value of 'x  from Eq. (5) and value of 

't  from Eq. (7) 

 

We get 

 

2 2 2 2 2 2 2 2

2

1
( ) [ (1 )]

x
x c t k x vt c k t

v k
       

 

Now on comparing the coefficients of 2t of both the sides of equa-

tion and similarly on comparing both the sides of coefficients of 

2xt we get the same result i.e. 

 

2

2

1

1

k
v

c




                                                                                   (8) 

 

Now putting the value of k in eq. (7)  

 
2

2 22 2 2 2

1 1
'

1 1

x v vx
t t t

v c cv c v c

   
      

    

                             (9)

 

 

And on putting the value of k in the eq. (5) 

 

 
2

2

1
'

1

x x vt
v

c

 


 

 

Which is the Lorentz transformation with y’=y and z’=z. 

For inverse transformation, 

From eq. (6) putting the value of x in eq. (5) i.e. 

 
' [ ( ' ') ]x k k x ivt vt  

 
 

Now on dividing ' [ ( ' ') ]x k k x ivt vt    by iv and raising its pow-

er to 4, we get 

 
44 2

2kvt k x x
k t

iv iv iv

   
    

    or
 

4
2

4 2k x x
kt k t

iv iv

  
   

   

 

Or 

 

2

1
1

x
t k t

iv k

  
    

                                                  
(10) 

 

Now on putting the value of x  from eq. (7) and t from eq. (10) in 

eq. (4) we get 

 

 ))(2( 2222222 tivtivxxktcx    

])
1

1(
)(

)
1

1(
2

[ 2

22

2

2

222

kiv

x

kiv

tx
tkc 


                                         (11) 

 

Now equating the coefficient of 2't and 2 'x t we get the same re-

sult i.e. 

 

2 2

1

1 ( )
k

iv c


                                                       
(12) 

 

Substituting the value of k  in eq. (7) we get, 

 

2 21 ( )

x ivt
x

iv c

 


                                                        
(13) 

 

And putting the value of 
2 2

1

1 ( )
k

iv c



and

2

2 2

1 ( )
1

iv

k c


   from 

eq. (12) in eq. (10) we get inverse transformation different from 

Lorentz’s inverse transformation  

 

2

2 21 ( )

ivx
t

ct
iv c


 


                                                        

(14) 

2.1. New composition laws 

However, the proposed paper treats each case differently and pro-

vides the formulas accordingly.  

Consider two systems S and S  , S   moving in positiveX direction 

with a velocity v  relative to frame S . Imagine a particle P  mov-

ing with u  relative to system S 
 

Since the Lorentz transformation equations  
2 2

1
' ;

1
x x vt

v c
 



&and the transformation equations in this paper are same. 

 On differentiating eq. (5) and (8)  

i.e. equations  
2 2

1
'

1
x x vt

v c
 


 and 

22 2

1
'

1

vx
t t

cv c

 
  

  
 

We get 

 

 
2 2

1
'

1
dx dx vdt

v c
 

                                           
(15) 

 

And 

 

2

2 21

vdx
dt

cdt
v c


 

                                                       
(16) 

 

Now from Eq. (15) & (16), on dividing and further the numerator 

and denominator of their result is divided by dt  we get 

 

2
1

u v
u

uv

c


 


 

Or 
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2
1

u v
u

u v

c

 





   [7] 

 

1). If a particle moves with u   in a reference frame S   and if S 

has a velocity v  in negative X-direction relative to S  at rest, then 

the velocity of the particle relative to S  will appear to be .u  

2
1

u v
u

u v

c

 
 




                                                            

(17) 

 

2). If a particle moves with u   in a reference frame S   and if S 

has a velocity v  in positive X-direction relative to S  at rest, then 

the velocity of the particle relative to S  will appear to be u  
 

2
1

u v
u

u v

c

 





      

(18) 

 

It is notable that in both the above cases particle is moving in a 

moving frame S   moving with uniform velocity v  or v relative 

to S which is at rest. So the particle’s velocity what appears to be 

moving from frame S (at rest) will be the addition of real veloci-

ties with their signs, be it negative or positive. 
 

However, the inverse transformation in this paper is different from 

Lorentz’s one as it gives emphasis that the frame at rest is at rest 

in its own frame and it cannot be considered moving with real 

velocity, whether, it is negative or positive. It only appears to be 

moving with the same velocity (with which the moving frame is in 

motion) from moving frame and that too till it remains in motion 

so this appearance is attributed to imaginary velocity alone but not 

to the real one.  

Now the inverse transformation according to this paper is; 

 

2 21 ( )

x ivt
x

iv c

 


                                                       
(19) 

 

And 

 

2

2 21 ( )

ivx
x

ct
iv c


 


                                                        

(20) 

 

Now on differentiating the above equations we get 

 

2 21 ( )

dx ivdt
dx

iv c

 


                                                                        (21) 

 

& 

 

2

2 21 ( )

ivdx
dx

cdt
iv c


 


                                                       

(22) 

 

Now from Eq. (21) & (22), on dividing and further the numerator 

and denominator of their result is divided by dt   we get the rela-

tion which is valid for any particle moving with velocity u   in a 

reference frame S  at rest relative to S   which has a velocity v  in 

negative X- direction, then the velocity of the particle relative to

S   will appear to be u  
 

2
1

u iv
u

uiv

c

 




                                                            

(23)
 

 

Similarly, 

2
1

u iv
u

uiv

c


 


                                                                                  (24)

 

 

For a particle moving with velocity u   in frame S  which is at 

rest, and its velocity appears to be u in S  which is moving with 

v  relative to S . It is obvious to note that the motion of a particle 

in stationary frame will be an addition of velocity [8] and a com-

plex velocity vector with their respective signs.  

3. Maxwell equations are found invariant un-

der proposed transformation 

If, Ex, Ey, Ez are components of electric field strength E along three 

axes ),,,( zyx  respectively relative to S and Ex’, Ey’, Ez ’relative to

S  and Bx, By ,Bz and Bx’, By’ ,Bz’ are the components of magnetic 

field induction B relative to frame S and S’ respectively along the 

three axes, then 

 

'x x
E E , 

' 2

( )

1

y z

y

E iv B
E







' 2

( )

1

z y

z

E iv B
E







 

 

And 

 

'x x
B B

, ' 2

( )

1

y z

y

B iv E
B







' 2

( )

1

z y

z

B iv E
B








  

Maxwell’s equations are found invariant under Lorentz transfor-

mation [8]. 

It is to prove that laws of electromagnetic fields are unchanged by 

the introduction of the proposed law of transformation i.e. Max-

well’s equations should be invariant under these transformations.  

3.1. Transformation of differential operators 

Consider two systems S and S’. S’ moving with velocity v  rela-

tive to S along (+)ve direction of x-axis. 

If a wave is travelling in space with a velocity v  in system S, then 

the propagation equation for such a wave is of the form 

 
2 2 2 2

2 2 2 2 2

1
0

x y z c t


    
    

          
 (25)

 

 

Here   is known as wave function and differential operator 

2 2 2 2

2 2 2 2 2

1

x y z c t

    
   

    
Is also known as D’Alembert’s operator 

and is denoted by 2 Here  is function of  , ,x y z and t thus it 

may be written as  , , ,x y z t
. 

Now in the frame 'S ,which is moving relative to S ,the propaga-

tion equation of same wave is given by 
2 2 2 2

2 2 2 2 2

1
0

' ' ' 'x y z c t


    
    

    
where c is not primed because 

according to principle of relativity, it is always constant. 

Thus  may be written as  ', ', ', 'x y z t  

We, thus have, 

 

' ' ' ' '

x y z t

x x x y x z x t x

             
    

                                 (26)

 

 

According to new law of inverse transformations, we have  
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2 21 ( )

x ivt
x

iv c

 



, ', 'Y Y Z Z  and 

2

2 21 ( )

ivx
x

ct
iv c


 


            

(27) 

From eq. (24) we have 

 

2

1
, 0, 0

' ' '1

x x x

x y z

  
  

  
 

 

2' 1

x iv

t 




                                                            
(28) 

 
2

2

/
, 1, 0, 0

' ' ' '1

x iv c y z t

x y z y

   
   

   
 

 

Thus from (23) we have  

 
2

2 2 2

/
,

' 1 1

iv c iv

x x tc

  

 

  
 

   
 

 

22

1

' 1

iv

x x c t






   
  

    
 

 

Or 

 

22

1

' 1

iv

x x c t

   
  

           
(29) 

 

Also 

 

' ' ' ' '

x y z t

y x y y y z y t y

             
    

         
 

 

Putting values from (25), this gives  

 

'y y

  


 
 

 

Or 

 

'y y

 


           
(30) 

 

Similarly          (31) 

 

Again, we have 

 

' ' ' ' '

x y z t

t x t y t z t t t

             
    

         
 

 

1

2 21 1

iv

x t

 

 

 
 
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(32) 

 

From (26),(27),(28) and (29) for transformation equations of dif-

ferential operators, we have 
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Similar to inverse transformation, transformations may be evaluat-

ed to be 
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(34) 

 

Equation (30) and (31) involve required transformations of differ-

ential operators 

3.2. Invariance of d’ alembertian operator 2 

Consider two systems S and 'S , 'S  moving with velocity v rela-

tive to S  along (+)ve direction of x-axis. If ( ', ', ', ')x y z t and 

( , , , )x y z t  are coordinates of any event in S  and 'S  

respectively, then 

D’ Alembertian in systems S is 
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And D’ Alembertian in systems 'S is 
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According to transformations of differential operators we have  
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Which gives as 
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Thus we may say that ’2is invariant under new Transformations 

of coordinates.  

3.3. The Invariants of the electromagnetic field 

It is significant to mention that under the proposed transformation 

system we obtain two invariants of the electromagnetic field[9] 

which are 
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 2 2 2 2 2 2 2 2 2 2 2 2

' ' ' ' ' 'x y z x y z
c B E c B c B c B E E E      

 
 

2

2
2

2 2 2 2

' 22

22

2

2 2

1

1 1

y x

x x y

z y z y

x

iv
B E

ivcc B c c B E
c

E ivB E ivB
E



 

 
   

      
   

 

      
      

        
 

2

2

2 2
2 2 2

2

2

1

y z y z

x

iv iv
B E B E

c cc B c


 
  

   
 

   
 

2

2

2 2
2

2

2

1

x y y z

iv iv
B E E B

c cc


 
  

 
 

   
 

2 2 2

2

2 2

2 ( ) 2( )

1 1

x z y z z y x y

x

E ivB ivE B E iv B iv E B
E

 

          
     

           
 

2 2 2 2 2 2 2

2 2 2

2 2

( )
1

(1 )

y z y z

x x

c B c B E E iv
c B E

c

    
    

    
 

 2 2 2 2 2 2 2 2 2

' ' 'x y z x y z
c B c B c B E E E     

 
 

2 2 2c B E          (35) 

 

ii) 
   ' ' ' ' ' '

'. ' .
x y z x y z

E B iE jE kE iB jB kB    
    

             ' ' ' ' ' '
. . .

x x y y z z
E B E B E B  

 
 

 
 

 
 

2 2

2

( )

(1 )

z z y z z y y y

iv iv
E B E E iv B B B E

c c



  

  
 

2

2

( )
1

(1 )

y y z z

x x

E B B E iv
E B

c

  
   

    
 

.
x x y y z z

E B E B E B E B   
        (36) 

4. Invariance of space-time under modified 

transformation law 

We will see how the space-time interval is invariant to the pro-

posed transformation laws.  

Let the coordinates of two points are ),,,( 1111 tzyx  and 

),,,( 2222 tzyx  respectively, the space-time interval is obviously 
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[Lorentz]. That is also invariant to the proposed transformation. 

For, if the corresponding coordinates of these points in a frame ,S 

moving along the axis of X of frame ,S with a constant velocity v

relative to it, be ),,,( 1111 tzyx  and ),,,( 2222 tzyx   we have, in accord-

ance with inverse transformation under proposed transformation, 
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Which clearly shows that Space-Time interval is invariant to pro-

posed Transformation in this theory. 

4.1. Transformation for rotating frame of reference 

We obtain the same result through the proposed theory which 

Minkowaski established using Lorentz transformation; because for 

real velocity the transformation in the proposed theory and Lo-

rentz transformation are not two different but the same. Min-

kowaski established from a comparison with the transformation 

equations that the change from a frame S  with axes ),,,( tzyx  to a 

frame S with axes ),,,( tzyx   and moving relative to ,S  along the 

X axes with a velocity v in time t  is equivalent to rotating the axes

),,,( ictwzyx   through an angel )( vt  in the xw  plan such that to 

an observer in S  this event of rotation with   appears to be 
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cos
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v

c

 
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Since ;1cos,  cv  hence    is imaginary. 

However, for inverse transformation, Lorentz uses the same real 

velocity with opposite signs whereas in the proposed theory com-

plex velocity vector is used with opposite signs. 

Let us examine if we get the same results with complex velocity 

vector of the proposed theory. 

According to the proposed theory to an observer in moving, frame 

S  frame S (at rest) will appear moving with velocity iv  in the 

same time t is equivalent to rotating the axes ),,,( ictwzyx   

through an angel )( ivt  or i  in the xw  plan. Straightaway 

)( i is born an imaginary angle. 

 

The angels being imaginary for both the observers prove that the 

space-time intervals are invariant, which further justifies the exist-

ence of forth coordinate of time as an imaginary length along with 

the three spatial coordinates in the proposed transformation. With 

this proof, we can convincingly state that it follows the Poincare 

transformations in the complex forms.  

5. Conclusion 

This paper emphasizes that a single magnitude attached with one 

frame cannot impart another frame a real velocity in the same 

event at the same point of time, what moving frame sees is a mere 

reflection of its own motion in the other frame to appear it moving 

in antipodal direction. Thus the relative motion is not a just direc-

stion reversal with real velocities but a synthesis of both real and 

imaginary motions. The inclusion of real velocity (+v or -v) gives 

the same Lorentz transformation but iv  (+ve or –ve) reverses it 

for inverse transformation. And using iv  imaginary angle auto-

matically takes birth, which justifies the forth imaginary coordi-

nate of time proving the invariance of Space-time intervals. Under 

these laws, Maxwell equations are found invariant because non-

inherent scalar quantities involve vector quantities, whether they 

are in cross product or in dot product; whereas inherent scalar 

quantities do not include any vector one such as mass, time, di-

mensions, which show de-reciprocity to distinguish frame at rest 

with one that moving. The inclusion of iv with v in mass velocity 

relation shows de-reciprocity but moving mass remains increased 

at higher velocities and at c  indeterminate mass is obtained i.e. 

the mass of photon. Thus matter transforms it into gamma rays at 

speed c . Time dilation coupled with time concentration produces 

desirable results. 
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