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Abstract 
 

In this paper, the homotopy perturbation method (HPM) is applied for calculating the perihelion precession angle of planetary orbits in 

General Relativity. The HPM is quite efficient and is practically well suited for use in many astrophysical and cosmological problems. 

For our purpose, we applied HPM to the approximate solutions for the orbits in order to calculate the perihelion shift. On the basis of the 

main idea of HPM, we construct the appropriate homotopy that leads to the problem of solving the set of linear algebraic equations. As a 

result, we obtain a simple formula for the angle of precession avoiding any restrictions on the smallness of physical parameters. First of 

all, we consider the simple examples of the Schwarzschild metric and the Reissner - Nordström spacetime of a charged star for which the 

approximate geodesics solutions are known. Furthermore, the implementation of HPM has allowed us to readily obtain the precession 

angle for the orbits in the gravitational field of Kiselev black hole. 
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1. Introduction 

The shift of the perihelion of planetary orbits is a classical test of 

any theory of gravity [1], [2]. For example, the perihelion preces-

sion in General Relativity (GR) and some modified theories of 

gravity, were recently considered in [3]-[8]. The perturbations 

determined by a generic alternative theory of gravity to the GR 

solution describing the gravitational field around a central mass 

are worked out in [9]. The authors of [10] used recent observations 

from solar system orbital motions in order to constrain some alter-

native theories of gravitation. In particular, the spherical solutions 

of the theory are used to describe the Sun's gravitational field and 

advances of planetary perihelia in order to obtain upper bounds on 

the allowed f (T)  corrections. In [11], the perihelion precession of 

planetary orbits is estimated for different gravity theories in string-

inspired models. Moreover, a way to obtain information about 

higher dimensions from observations by studying a brane based 

spherically symmetric solution is considered for the classic tests of 

General Relativity in [12]. The analytical computation of the Mer-

cury perihelion precession in the frame of relativistic gravitational 

law and comparison with general relativity is presented in [13]. 

The direct computation of the perihelion shift meets a certain dif-

ficulties due to the fact that the geodesics equations in RG are 

nonlinear, and therefore cannot be solved exactly in general case. 

For instance, the geodesic equations resulting from the Schwarz-

schild gravitational metric element are solved exactly by the 

Weierstraβ - Jacobi modular form [14]. Mostly, the perihelion 

precession of planetary orbits based on Einstein's equations had 

been calculated in different approximations for a general spheri-

cally symmetric line element. Note, however, that even after the 

approximate solution for the orbit is found, the problem of calcu-

lating the perihelion shift has still to be solved. Generally, such a 

calculation is performed from the assumption of its smallness or 

the smallness of the orbital eccentricity. However, in work [15] it 

has been shown that the calculations of such a kind can be per-

formed without an assumption of existence of a small physical 

parameter, with any desired accuracy by means of the so-called 

homotopy perturbation method (HPM). 

The idea of HPM which is a semi-analytical method was proposed 

for solving differential and integral equations [16], [17]. Later, the 

method is applied to solve the non-linear and non-homogeneous 

partial differential equations. This method has a significant ad-

vantage providing an analytical approximate solution to a wide 

range of nonlinear problems of the fundamental and applied sci-

ences.It is interesting that this method sometimes allows to find 

even an exact solution with the help of a few iteration. This meth-

od and a wide spectrum of its application have been extensively 

developed for several years by numerous authors (see [18] and 

references therein). 

Recently there were studies in which this method was used for 

analytical calculations in the field of cosmology and astrophysics 

(see, e.g. [19] - [22]). Our aim is to give one more application of 

the method to the problem of planetary motion in the spherically 

symmetric gravitational field in General Relativity. By applying 

this method, we obtain a simple formula for the angle of preces-

sion avoiding any restrictions on the smallness of physical param-

eters. 

As an example, we consider the standard Schwarzschild and 

Reissner-Nordström metrics in order to find the perihelion preces-

sion angle via HPM formula. Finally, we obtain the perihelion 

shift in the gravitational field of a black hole surrounded by quin-

tessence (Kiselev black hole) [23]. The main aim from this paper 

is to propose HPM to find the approximate values of precession 

for planetary motion in GR. Thus, we demonstrate that this meth-

od can proved the effectiveness in the calculation of some essen-

tial parameters in astrophysical problems. 

http://creativecommons.org/licenses/by/3.0/
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2. Preliminaries 

In this section, we give some remarks on the calculation of preces-

sion angle from the approximate solutions for the orbits, and the 

main ideas of HPM which are required for solving our problem. 

2.1. Calculation of the precession angle from approxi-

mate solution for the orbits 

The calculation of the precession angle would be a simple problem 

if one knew the exact solution of the equations of motion. Howev-

er, except in rare cases, the orbital motion can be described only in 

a certain approximation, for example, in the following form 

 

M M
u( ) (1 ecos ) U( ),

2 2L L
                                                           (1) 

 

Where the function u 1 / r  , M  is the mass of the central star, L  

is the conserved angular momentum of the planet, e  is the orbital 

eccentricity, and U( )  is a differentiable function of angle   and 

the orbital parameters, which gives a correction compared to the 

Keplerian orbit determined by the first term of equation (1). Find-

ing the correction U( )  has been widely discussed (see, e.g., [2]). 

We only note that one of the authors of the present paper (V.K.S.) 

have shown that the correction function U( )  can be alternatively 

obtained by a simple calculation with the help of HPM [20] or the 

He's variational iteration method [24]. 

In any case, after finding the corrections, the problem of calcula-

tion of the perihelion displacement angle from (1) could be solved. 

The simplest way to find the angle from this equation follows 

from several assumptions concerned to the smallness of orbital 

parameters, such as e  , M / L  and so on [2]. It allows to represent 

equation (1) in an approximate form as follows 

 

M
u( ) [1 ecos( )].

2L
                                                                  (2) 

 

For the perihelion of orbit, it satisfies cos( ) 1   , and hence 

2 2     . Therefore, the precession angle of perihelion is 

2    . 

A more precise formula for the shift angle can be obtained from 

the maximum condition u ( ) 0    in the perihelion. Applying this 

condition to equation (1), one can get the following equation  

 

1sin e U ( ) 0                                                                             (3) 

 

To be solved subject to the unperturbed solution 2    . This 

equation could be approximately solved using the assumption that 

the precession angle   is much smaller compared to 2  , i.e. 

using the approximate equalities sin(2 )   , cos(2 ) 1  , 

and the similar ones. 

Nevertheless, when the need in greater accuracy arises, one has to 

take into account not only linear terms but also the higher degrees 

of   in expansion of U (2 )   in the power series. This ap-

proach leads to the difficult problem of solving the algebraic equa-

tion with respect to  . As a result, one has to simplify this calcu-

lation once again according to the relevant physical parameters of 

the problem. This excludes a large value of displacement, which 

can be caused by the real physical sources of gravity. In this paper, 

we continue to use HPM to the astrophysical problems, demon-

strating how one can find the precession angle from equation (3) 

without any small physical parameters. 

However, we would like to note that one of the simplest methods 

for finding successively better approximations to the roots of 

equation (3), known as Newton's method, could be also applied in 

this case. If we denote the l.h.s of equation (3) as 

1f ( ) sin e U ( )      , the Newton's iteration for the equation 

f ( ) 0   can be represented as follows n

n

f ( )
n 1 n f ( )


     

. Taking 

2n    , we can obtain the following first-order approximation 

for the precession angle 2n 1   : 

 

1e U (2 )
.N 11 e U (2 )

  
 

  
                                                                      (4) 

2.2. Briefly on HPM 

Let us recall the basic ideas of HPM [16] for solving nonlinear 

equations. Here, we would like to consider the functional 

equation: 

 

A( ) g(r), r ,                                                                            (5) 

 

With the boundary conditions B( , / n) 0; r      , where A  is a 

general operator, B  is a boundary operator, g(r)  is a known ana-

lytic function,   is the boundary of the domain   . As always, 

we suppose that operator A  can be divided into two parts: R  and 

N  . Therefore, equation (5) takes the following form: 

 

R( ) N( ) g(r).                                                                             (6) 

 

Following the homotopy technique, we have to construct a ho-

motopy (r,p) : [0,1]    , say[18], 

 

H( ,p) (1 p)[R( ) R( )] p[A( ) g( )] 0,0                                      (7) 

 

Where r  , p [0,1]  is an imbedding parameter, and 0  is an 

initial approximation of (5). Hence, one can see that 

 

H( ,0) R( ) R( ) 0,0

H( ,1) A( ) g(r) 0,

     

    
                                                          (8) 

 

And changing p  from 0  to 1  is the same as changing H( ,p)  

from R( ) R( )0    to A( ) g(r)   , which are called homotopic. In 

topology, this is called deformation. Due to the fact that 0 p 1   

can be considered as a small parameter, by applying the perturba-

tion procedure, one can assume that the solution of (7) can be 

expressed as a series in p  , as follows: 

2 3p p p ....0 1 2 3           When we put p 1 , then equation 

(7) corresponds to (6), and the approximate solution for (6) be-

comes as follows 

 

lim ....0 1 2 3
p 1

          


.                                                  (9) 

 

This series is convergent for the most cases. However, the conver-

gent rate depends upon the nonlinear operator A( )  . Sometimes, 

even the first approximation is sufficient to obtain the exact solu-

tion [16]. For the details about the convergence of HPM, we refer 

the reader to Refs. [25] and [26]. 

As it is emphasized in, the second derivative of N( )  with respect 

to   must be small, because the parameter p  may be relatively 

large, i.e. p 1 , and the norm of 1R N /    must be smaller than 

one, in order that the series converges. 

3. Calculation of precession angle by HPM 

Since for finding the precession angle it is necessary to solve non-

linear equation u ( ) 0    in the form (3), one can apply HPM for 
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this purpose. Note that the correct approximate solution represent-

ed in the form (3) has to satisfy U (0) 0   . Thus, let us consider 

the following homotopy for equation (3) 

 

1sin p e U ( ) 0,                                                                        (10) 

 

Where p [0,1]  is the imbedding parameter. According to HPM, 

we assume that the solution for (10) can be represented by a series 

in p  , that is 

 

2 3p p p ....0 1 2 3                                                              (11) 

 

As p 1  , equation (10) tends to (3), and (11) becomes the ap-

proximate solution of (3), that is lim ....0 1 2 3
p 1

          


 . 

Next, we have to express both terms in equation (10) in the form 

of Taylor series in p  as 

 

12 2sin sin p cos p cos sin0 1 0 2 0 012

13 3p cos sin cos ...3 0 1 2 0 016

 
            

 

 
           

 

             (12) 

 

And 

 

12 2U ( ) U ( ) U ( ) p U ( ) U ( ) ...0 1 0 2 0 012

 
                 

 
            (13) 

 

Substituting (12) and (33) into equation (10), we get the following 

set of simple algebraic equations 

 

0p : sin 0,0                                                                      (14) 

 

1 1p : cos e U ( ) 0,1 0 0
                                                         (15) 

 

12 2 1p : cos sin e U ( ) 0,2 0 0 1 012

                                     (16) 

 

13 3p : cos sin cos3 0 1 2 0 016
          

 

11 2e U ( ) U ( ) 0,2 0 012

         
 

                                                           (17) 

 

Since we consider the Keplerian orbit as the path of unperturbed 

motion, we have to take 20    for the solution of equation (14). 

Therefore, the precession angle is given by 

...HPM 1 2 3      as it follows from (9) at p 1 . Solving 

equations (15)-(17), one can obtain  

1 1e U (2 ) 1 e U (2 )HPM
         

 

2U (2 )U (2 ) U (2 )2 2e U (2 ) .
2 6

          
   

                               (18) 

 

The obvious advantage of this formula is the absence of any re-

quirement for smallness of the angle. At the same time, the num-

ber of terms taken into account when calculating   by this equa-

tion determines only the accuracy with which we find out this 

angle. If necessary, the subsequent terms in the approximate for-

mula (18) can be easily obtained by the corresponding extension 

of series in equations (12) and (13). Note that the final accuracy 

with which the the angle   can be find out from equation (18) is 

determined in a great degree by the accuracy of the approximate 

equation (1). 

One can easily see that equation (4) gives the same value of angle 

as it represented by equation (18) in the first-order approximation 

only if 1| e U (2 ) | 1     , that is when 

1 1 1(1 e U (2 )) 1 e U (2 )         . Noteworthy that in the deriva-

tion of equation (24), the restriction of such a kind is not used. 

4. Some examples of the precession angle 

Taking the order of accuracy represented by equation (18), let us 

calculate the magnitudes of the precession angles in some relevant 

cases of a spherically symmetric spacetime. Since the planetary 

orbits in GR are usually treated as the time-like geodesic in the 

curved spacetime [1], [2], we should consider the approximate 

solutions (3) for the geodesic equation in the spherically symmet-

ric spacetime, 

 

2d x dx dx
0,

2 d dd

  


  
 

 

 

In the spherical coordinates x (t, r, , )     . The general stationary 

spherically symmetric spacetime line element is represented by  

2dr2 2 2 2 2 2ds f (r)dt r (d sin d ).
h(r)

         (19) 

It is well known that the perihelion precession is usually related to 

the geodesics orbits, i.e. r( )  , and the coordinate u 1 / r  is more 

convenient than r  to derive the perihelion precession. The main 

equation of such a motion could be simply obtained from equation 

(19) as follows [2]  

 

2 2d u E d h(u) 1 1 dh(u)2h(u)u u ,
2 2 2du f (u) 2 dud 2L L

  
       

   
                       (20) 

 

Where E f (r)(dt / d )   is the total energy of the planet, and 

2L r (d / d )    is its angular momentum per unit mass. 

Below, we apply HPM formula (18) for the solutions of this equa-

tion in the form (3) obtained earlier by several authors. 

4.1. Schwarzschild metric 

In the simplest case of the Schwarzschild metric describing the 

gravitational field of an uncharged non-rotating star, we have 

f (r) h(r) 1 2M / r    in equation (19), where M  is the mass of 

star. Therefore, one can find that the geodesics equation (20) in 

Schwarzschild spacetime reduces to the following equation 

 

2d u M 2u 3M u .
2 2d L
  


 

 

The approximate solution u( )  of this equation can be represented 

(see, e.g.,[20, 24]) by 

 

3M M 2u( ) (1 ecos ) 3 2e 3e sin
2 4L L

2 2 2e cos (3 e )cos .

[

]

        

    

                             (21) 

 

Comparing equations (1) and (21), we have in this case that 

 

2M
U( )

2L

2 2 2 23 2e 3e sin e cos (3 e )cos ,  
  
              (22) 
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And, hence, 

 

2M
U (2 ) U (2 ) 6 e ,

2L

2M2U (2 ) 3(1 e) .
2L

      

   

                                                    (23) 

 

Using these expressions in (18), we obtain the following angle of 

precession in HPM approximation 

 

49(1 e) 212
2e

2 2 2 46 M 3(1 e) M M
1 .HPM 2 2 4eL L L


 

    
      

   

                (24) 

 

At the same time, the precession angle (4) obtained via the New-

ton's iteration method follows from (23) as 

 

1
2 2 2M 3(1 e) M

6 1 .N 2 2eL L


 
    
 
 

                                               (25) 

 

This equation yields the same value of angle as it represented by 

equation (24) in the first-order approximation when 
2

2

2

3(1 e) M 1
e L


  . 

Fig. 1 shows the dependence of the precession angle on the pa-

rameter M / L  for the Einstein's formula 2 26 M / L  and for the 

approximate values of shift according to equations (24) and (25). 

As can be seen, formula (25) provides a significant divergence for 

the large values of parameter, while formula (24) is free from such 

a divergence. 

 

 

Fig. 1: Shows the Einstein's Precession Angle 
E

2 26 M / L   (Black 

Line), and the Angle 
HPM

  in (24) (Blue Lines) and 
N

  In (25) (Red Lines) 

Versus the Parameter M / L  . Here the Eccentricity Is Equal To e 0.1  

(Solid Lines) or e 0.05  (Dashed Lines). 

4.2. Reissner-nordström spacetime 

In the case of the Reissner-Nordstrц m spacetime of a charged 

star, we have [1] 

 

2 2f (u) h(u) 1 2Mu Q u ,                                                          (26) 

 

Where Q  is the charge of star. According to (26), the geodesic 

equation (20) is the following one 

 

2 2d u Q M 2 2 31 u 3u M 2Q u .
2 2 2d L L

 
     
   

                                      (27) 

 

The simplest approximate solution of equation (27) can be given 

by (see, e.g., [24])  

 

3 2M M Q2 2u( ) (1 ecos ) 3 2e 2(1 2e )
2 4 2L L L

2 2 2 2Q Q Q Q21 e 3e sin
2 2 2 2M L 6M 4L

2 2Q Q2 3 23 e (e 8e 8) cos
2 24L M

2 2Q Q2 2 3 31 2 e cos e cos .
2 2L 4L


       


 
       
 
 

 
       
 
 

 
     

  
  

               (28) 

 

Comparing this solution with (1) in this case, one can get all terms 

in equation (18), for example, 

 

2 2 2 2M Q M Q2U (2 ) 6 e e 3 e(4 e ) .
2 2 4L L 2L

                                      (29) 

 

With the help of (18), one can easily obtain the value of shift angle 

in the minimum degree of approximation as 

 

2 2 2 2M Q M Q26 3 (4 e ) .
2 2 4L L 2L

                                                 (30) 

 

We do not provide here the full calculation according to the HPM 

formula (18) only due to its cumbersome nature. Despite that we 

have deliberately taken the minimum degree of approximation in 

this calculation, all subsequent approximations can be readily 

obtained. 

4.2. Precession angle in the gravitational field of Kiselev 

black hole 

The spherically symmetric solutions describing a black hole sur-

rounded by dark energy in the form of a quintessential scalar field 

with equation of state in the form p wq   , with the quintessen-

tial parameter 1 w 1/ 3q     , has been found by Kiselev [23]. 

The geometry of the static spherically symmetric black hole sur-

rounded by a quintessence (or Kiselev spacetime) is given by 

equation (1) with [23] 

 

q
3w 1

f (u) h(u) 1 2Mu u ,


                                                     (31) 

 

Where M  is the mass of the black hole and   is the quintessence 

parameter related to the energy density as follows 

 

q
3(1 w )

3 w u / 2q q


     

 

Substituting (31) into equation (20), one can obtain the following 

geodesic equation in the gravitational field of Kiselev black hole  

 



42 International Journal of Advanced Astronomy 

 

q q

2d u M 2u 3u M
2 2d L

(3w 1) 3 (w 1)q q3w 3w 2
u u .

2 22L

  


    
 

                                      (32) 

 

The approximate solution for equation (32) in the case w 1/ 3q    

is obtained in [24] in the form (1) with 

 

2 2M L2 2 2U( ) 3 2e e cos
2 2L M

2 2L L23e 1 sin 3 e cos .
2 26 M M


      


   
           

    
    

                           (33) 

 

And, hence, 

 

2M
U (2 ) U (2 ) 6 e e ,

2L

2M2U (2 ) 3(1 e) (1 e) .
2L

         

      

           (34) 

 

Using these expressions in (18), we obtain the following angle of 

precession in HPM approximation 

 

2 2 2M (1 e) 3(1 e) M
6 1HPM 2 2e eL L

2 2 3 23(1 e) 3(1 e) M2 22 2
2 2 23e e L

4 49(1 e) M212 ,
2 4e L

    
         
    

      
        
   
   

 
   

  
  

                      (35) 

 

Which coincides with (24) at 0   . At the same time, the ap-

proximate magnitude of the precession angle followed from equa-

tions (4) and (34) is given by 

 

1
2 2 2M (1 e) 3(1 e) M

6 1 .N 2 2e eL L


    
         
   
   

                      (36) 

 

Provided that 1  and 2 2(M / L ) 1  , both equations (34) and (36) 

are substantially simplified up to 

 

2M
6 .

2L
                                                                               (37) 

 

For the specific value of eccentricity e 0.12  , the precession 

angle in different approximations given by equations (35) - (37) as 

a function of M / L   and   is presented in Fig. 2.  

 
Fig. 2: Shows the Precession Angle in the Gravitational Field of Kiselev 
Black Hole According to Formulae (35) (In Red), (36) (in Blue) and (37) 

(In Green) Versus the Parameters M / L  and  . Here the Eccentricity 

Is Taken to Be e 0.12 . 

5. Conclusion 

In this paper, we have shown that HPM can be employed to obtain 

the approximate value of the precession angle of the planetary 

orbit in the framework of GR mechanics. Using the main idea of 

HPM, we have constructed the appropriate homotopy that leads to 

the problem of solving the set of linear algebraic equations. As a 

result, we have obtained a simple formula for the angle of preces-

sion avoiding any restrictions on the smallness of the physical 

parameters. For the illustrative purpose, we have considered the 

examples of analytic calculation of the precession angle in the 

Schwarzschild metric and the Reissner-Nordström spacetime of a 

charged star using the approximate geodesics solutions obtained 

earlier. Moreover, we have applied HPM to obtain the perihelion 

shift due to the gravity of Kiselev black hole subject to the equa-

tion of state w 1/ 3q    . It is worthy to note, that all these results 

could be obtained by a minimum size of computations. 

According to our results, it can be concluded that HPM is working 

well for the approximate solutions for the perihelion shift of plane-

tary motion around the central mass. Foremost, the undoubted 

advantage of this method consists of that there is no need to estab-

lish a small parameter for solving a problem in some approxima-

tion, because such a small parameter sometimes could destroy the 

main feature of the exact solution. On the other hand, the approx-

imate solution and the rate of its convergence in this method great-

ly depend on the accuracy of the approximate solution for the 

geodesics motion. Moreover, it must be acknowledged that the 

formula (18) works only within the framework of the values of 

physical parameters for which the approximation (3) is valid. 
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