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Abstract 
 

In this paper we study the non linear stability of the triangular librations points in ER3BP considering both the primaries as radiating and 

oblate. The study is carried out near the resonance frequency satisfying the conditions , 2 , 31 2 1 2 1 2         in resonance as well as 

non resonance case. The study is conducted for various values of radiation pressure and oblateness parameters. It is observed that the 

case 1 2  corresponds to the boundary region of the stability for the system, further it is examined that the system experiences reso-

nance at 2 , 31 2 1 2      for different values of radiation pressures and oblateness parameter. In non-resonance case, it is observed that 

the equilibrium points are stable.In resonance case, for 0.0385209;c  and 21 2   the triangular equilibrium points are unstable. In 

case, when 31 2   for some values of radiation pressure and oblateness parameter, it is stable and for some of the values of the parame-

ters it is unstable. The model is best suited to the binary systems (Achird, Luyten, α Cen AB, Kruger- 60, Xi- Bootis). 
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1. Introduction 

One of the most famous and historically investigated chaotic dy-

namical systems is the elliptical restricted problem of three bodies 

(ER3BP) due to its application in dynamical astronomy, celestial 

mechanics and space mechanics. It constitute a major source of 

interesting theories in lunar and planetary sciences .The ER3BP 

describes the three dimensional motion of small particle called the 

infinitesimal mass under the gravitational force of two finite bod-

ies called primaries around their common centre of mass. A typi-

cal example of the ER3BP is the motion of an asteroid under the 

gravitational attraction of the Sun and the Jupiter. The orbital mo-

tion of the Earth- Moon System around the Sun and the motion of 

thousands of astronomical and astrophysical bodies such as satel-

lites, binary pulsars and the Moon have attracted attention and 

many studies has been conducted out in the model of ER3BP. The 

equilibrium points that appeared in ERTBP are very important for 

astronautical applications as space station can be easily located at 

these points due to minimum consumption of fuel, which is re-

quired for station keeping. 

Many researchers considered the primaries and the third body to 

be either a point mass or spherical but later on it has been found 

that in general, celestial or stellar bodies are sufficiently oblate in 

shape which plays a significant role in restricted three body prob-

lem. Some of the planets such as Earth, Saturn, Jupiter and stars 

namely Achernar, Regulus, Vega, Alfa Arae and Altair are oblate 

showing the deviated behavior from spherical shape having a sig-

nificant impact in restricted three body problem. Since, the rota-

tion of stars is very fast, equatorial bulges is formed and are re-

sponsible for oblate shape of neutrons stars, pulsars, white and 

brown dwarf stars. Many stars belong to binary system; hence the 

motion of a particle in the field of double star has created special 

interest in space dynamics. High mass X-ray binaries after com-

mon – envelope evolution and spiral in, produces double neutron 

star binaries. Fast spinning “recycled pulsars in binary systems 

provides good source to study the orbital kinematics. Einstein 

theory of relativity and theoretical gravitational waves can be 

applied to the double pulsars where warped space time due to shift 

of intense masses is extremely rare. [1]. It is found that pulsars and 

their orbiting companions are compact enough to be treated as two 

point masses. Along with [2,3] many others researchers found that 

some planets exist outside our solar system and confirmed that 

PSR B1257+12 and PSR B1620-26 possess extra solar planets 

orbiting them. In the stellar system, a planet moving in the field of 

binary star forms three body problem; providing a premise to 

study fundamental physics and to test alternative gravities as given 

by [4,5]. A planet in the neighborhood of any of the following 

PSR B1534+12, PSR B1913+16, PSR B1620+26, PSR 1257+13, 

PSR J1022+1002, PSR J1518+4904, PSR B1534+12, PSR 

B2127+11C, PSR 2303+46 and others provide an excellent mod-

els for elliptical restricted three body problem. 

The nonlinear stability of an elliptical or circular restricted three 

body problem of a Hamiltonian system is generally performed by 

using Kolmogorov-Arnold-Moser (KAM) theorem in non-

resonance case and by Markeev theorem in resonance case. 

Taking one of the bodies as radiating, the nonlinear stability of the 

triangular equilibrium points for resonance and non-resonance 

conditions was studied by [6]. Considering both the bodies as 

radiating in circular restricted three body problem, [7], [8] exam-

ined the stability of the triangular equilibrium points for non-

resonance as well as resonance case. [9] Discussed the nonlinear 

stability of the triangular equilibrium points in circular restricted 

three bodies, considering bigger primary as a source of radiation. 
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The nonlinear stability of the triangular Lagrangian points, con-

sidering
the bigger primary as oblatespheroid in circular case was 

examined by [10]. 
 

The ER3BP are studied by [11-26]. The present paper investigates 

the stability of the infinitesimal mass about the triangular equilib-

rium points in both resonance and non-resonance case satisfying 

, 2 , 31 2 1 2 1 2         in ER3BP The study is carried out at 

various values of radiation pressures and oblateness parameter. 

 This paper has been organized in various sections:  
Section 1 gives introduction, section 2 describes the equations of 

motion of the problem, section 3 deals with characteristics roots 

and first order stability of the triangular equilibrium points. The 

existence of resonance is discussed in section 4, while section 5 

deals with normalization and higher order stability of the libration 

points in non-resonance case. Stability in resonance case is dis-

cussed in section 6. Finally section 7 summarizes the discussion 

and conclusion of the paper. 

2. Equations of motion 

The differential equations of the motion of the infinitesimal mass 

in elliptical restricted three body problem under radiating prima-

ries in pulsating system as given by Narayan and Shrivastava [27] 

is: 

 

x 2y x    ; 

 

y 2x y    
                                (1)

 

 

where the force function is defined as: 

 

 

2 2x y 1

A A2 1 21 3
2

1 Q A(1 )Q Q A Q1 11 2 2 2
3 3r r1 2 2r 2r1 2


   

 
  

 

   
   
 
 

            (2) 

 

and 

 

 22 2r x y1    ; 

 

 22 2r x 1 y2     ;      (3) 

 

 
1

1 ecos f
 


                                   (4)

 

 

Q 1 , (i 1,2)i i   The radiation pressure, f  a true anomaly of the 

primariesand A ,A1 2  the oblateness parameter.
 .

 

The coordinates of the triangular equilibrium points L4 and L5 as 

given by: Narayan and Shrivastava [27] is: 

 

A A1 1 2 2 1x0
2 2 2 3 3

1 1
A A ;1 1 2 2

2 2

 
     

   

 

 

A A 2 21 2 1 21
3 3 3 9 9

y .o
2 1 1

A A1 1 2 2
3 3

  
    

   
    
  

                      (5)

 

3. Characteristics roots and first order stabil-

ity of the triangular equilibrium points 

The stability of the elliptical restricted three body problem is re-

stricted to planar case only. It is sufficient to study the stability of 

the triangular equilibrium points about L4 due to similar of L4 and 

L5 .The Hamiltonian as described by Narayan and Shrivastava 

[27] is given by: 

 

 

2 2p p
1 2H (p q p q )1 2 2 1

2

2 2(q q )ecos f 11 2
A A2(1 ecos f ) 1 2(1 ecos f ) 1 3

2

1 Q A(1 )Q Q A Q1 11 2 2 2
3 3r r1 2 2r 2r
1 2


   


 

  
  

 

  
   

   
 
  

           (6) 

 

Now expanding the Hamiltonian function given by equation (6) in 

the powers of pi and qi as: 

 

H H H H H HK 0 1 2 3
K 0

H ............4


    



 

 

 

where 

 

 H H , ,p ,p0       = constant; H 0 .1   

 

and by substituting
Q 1 , (i 1,2)i i  

we have: 

 

 

2 2p p
1 2H (p q p q )1 2 2 1

2

2 2(q q )ecos f
1 2

2(1 ecos f )

1

A A1 2(1 ecos f ) 1 3
2

(1 )(1 ) (1 )1 2

r r1 2

1 (1 )A A (1 )1 1 2 2
3 32r 2r
1 2


  






 
 

  
 

     
   

  
    
 
 
                  (7) 

 

Further by using Taylor’s theorem and equating the coefficients of 

2nd, 3rd, 4th order from the above equation (7) we have: 
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 

 
 

 

2 2p p1 2H P q P q2 1 2 2 1
2

2 2q q1 2 1
ecos f

2 1 ecos f A A1 21 ecos f 1 3
2

1 9 9 73 11
A A A A1 2 1 1 2 2

8 8 16 24 48

27 27 17 7 2A A q1 2 1 2 1
16 16 8 9

1 13
2 2

2 8

3 17 7 139
A A A1 2 1 1

4 4 8 24

15
A2 2

83
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2 1
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 
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 
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  
 
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 
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 


 
       
 
 
         

 
    
  



















 

 

After further simplification equation (8) can be rewritten as: 

 

2 2p p
1 2H (p q p q )2 1 2 2 1

2

ecos f 2 2(q q )
1 2A A1 22(1 ecos f ) 1 3

2

1 2 2(H q H q q H q )20 11 1 2 021 22(1 ecos f )


   


   
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   
                                    (8) 

 

where 

 

1 9 9 73 11
A A A A1 2 1 1 2 2

8 8 16 24 48

27 27 17 7
H A A20 1 2 1 2

16 16 8 9

132 1

2 8

 
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 
 
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3 17 7 139
A A A1 2 1 1

4 4 8 24

15 41 41 1
H 3 A A A11 2 2 1 2 1

8 8 8 6

73 2 1
2
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 
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 
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7 1

8

 
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 
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Also, 
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                                (13) 

 



International Journal of Advanced Astronomy 53 

 
1

H [1 3(A A ) / 2]4 1 2
24(1 ecos f )

4q
1

1155A 397111 98151 1A2
16 16 16 2

25 1235 A 1185 A2 1 1 1 2

2 16 2

395A 29545A 92691575 1 2 1

16 48 48 16

439 1234 A 6325 A2 1 1 1 2

144 16 12

6755 A 605 A2 1 2 2

48 48


    






   

  
 

 
    
 

   
    

 
    

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
   

 

34 3q q21

281A 575 211 1A2
16 16 2 16

21 351 A 21 A2 1 1 1 2

6 16 2

5669A 117A 23575 1 2 1

8 208 8 48

6121 7 A 319 A2 1 1 1 2

560 2 32

2357 A 83 A2 1 2 2

156 4

 

 
 
 
 
 
 

 
    

 
    

 
 

      
  

          
       
  




















 
 

2 26q q
1 2

4865A 235123 1051 1A2
16 48 8 12

75 4295 A 105 A2 1 1 1 2

12 48 8

5735A 1601A 421123 1 2 1

8 48 16 48

31 4865 A 245 A2 1 1 1 2

8 48 32

45 A 539 A2 1 2 2

8 4



 
 
 
 
 
 

 
   

 
     

 
 

       
  

         
       
  





















 
  

34 3q q1 2

1531A 69135 151 1A2
16 16 4 16

21 23 A 15 A2 1 1 1 2

5 2 4

337A 8997A 259135 1 2 1

8 2 112 16

293 1391 A2 1 1

40 16

3005 A 1315 A 175 A1 2 2 1 2 2

32 116 48

 

 
 
 
 
 
 

 
    

 
    

 
 

        
  

       
        
  





















   

1125A 17819 15751 1A2
16 16 32 16

45 1045 A 1575 A4 2 1 1 1 2q
2 2 8 32

495A 3167A 19171 2 1 26 2
8 32 16

1045 A 14765 A1 1 1 2

8 96

1325 A 6775 A2 1 2 2

32 48

  
  

 
 
 
 

 
   

 
      

 
 

        
  

       
        
  




















                          (14) 

 

The characteristics equation can be written in following form as: 

 

 27 14 2 2(1 e )
4

125 40 5 35
1 A A 01 2 1 2

6 3 6 18

  
      

 

 
       

   
 

If ω1 and ω2 be the frequencies and putting 
2 2   then 

 

 

2 2
1 1,2

1/2
2 2(1 e ) 27 1

125 401 2 1 A A(1 e ) 1 2
6 32

5 35
1 2

6 18

  

 
      
  
           
   
           

                                    (15) 

 

 

2 2
2 3,4

1/2
2 2(1 e ) 27 1

125 401 2 1 A A(1 e ) 1 2
6 32

5 35
1 2

6 18

  

 
      
  
           
   
           

                                    (16) 

 

The correlation between μ and ω1, ω2 is shown in figs. 1-5 for 

different values of radiation pressure and oblateness parameter. It 

is found that ω1 increases with increasing μ whereas ω2 decreases, 

and becomes equal to the critical value which is shown in the fig-

ures. 

 

 
Fig. 1: Correlation between Ω1 and Ω2 for A1=0.0001, A2=0.0002, 

Β1=0.001, Β2=0.002. 
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Fig. 2: Correlation between Ω1 and Ω2 for A1=0.0001, A2=0.0003, 

Β1=0.001, Β2=0.002. 

 

 
Fig. 3: Correlation between Ω1 and Ω2 for A1=0.0002, A2=0.0001, 
Β1=0.001, Β2=0.002. 

 

 
Fig. 4: Correlation between Ω1 and Ω2 for A1=0.0001, A2=0.0001, 

Β1=0.002, Β2=0.003. 

 

 
Fig. 5: Correlation between Ω1 and Ω2 for A1=0.0005, A2=0.0005, 

Β1=0.004, Β2=0.005. 

4. Existence of resonance in elliptical cases 

In order to discuss the existence of resonance we consider the 

following three cases: 

 

case1. When ω1= ω2  

 

2 2i.e.
1,2 3,4
  

 
 

Solving we obtain: 

 

 2 2 2(1 e ) 27 1 (1 e )

125 40 5 35
1 A A 01 2 1 2

6 3 6 18

    

 
       

      (17) 

 

For equality we have: 

 

43e
1

125 402 4 1 A A1 2
27 6 3

5 35
01 2

6 18



     

    
                                             (18) 

Since 

1
,

2
 

the positive sign is inadmissible. Hence the region of 

stability in first approximation can be written as: 

Thus, the value of  responsible for stable equilibrium points is 

given by: 

 

0.0385208965 0.83601A 0.535048A01 1 2

0.0334405 0.07802791 2

4e (0.01618 1.254A .80251A1 2

0.50159 0.117023 )1 2

   

    

  

  
                            (19) 

 

From equation (19) it is clear that, when A1= A2= β1= β2=e=0, 

0.0385208965c 
 

It is obvious that the case ω1= ω2 usually corresponds to a bound-

ary of the region of stability of the system. 

 

case2. When ω1= 2ω2 

 

2 2i.e. 4
1,2 3,4
  

 
 

Solving for μ the resonance value is obtained as: 

0.0242939 0.519045A 0.33219A02 1 2

40.20762 0.0484445 e (0.196351 2

.409165A 0.26185A 0.01636651 2 1

0.0381885 2

    

    

   


                               (20) 

 

case3. When ω1= 3ω2 

 

2 2i.e. 9
1,2 3,4
  

 
 

Solving for μ the resonance value is obtained as: 

 

0.0135160 20.270A 12.9729A03 1 2

40.81081 3.7837 e (0.75 15.625A1 2 1

10A 0.625 1.45833 )2 1 2

    

    

    
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5. Normalization and higher order stability of 

the libration points in non-resonance case 

In order to investigate the stability the Hamiltonian H is normal-

ized by Birkhoff’s method to the following form: 

 

2H t t c t c t t1 1 2 2 20 11 1 21

2 5/2c t o(t t )02 1 22

    

  
                                                 (21) 

 

Where 

 

2 22t p q ,i 1, 2i i i
  

 
 

,1 2 
is defined by equation (16). 

It is well known fact that if , H2 is of a positive definite form, then 

the equilibrium position is stable by virtue of Liapunov theorem 

[28] .Otherwise the problem of stability is solved by KAM theo-

rem as given by Arnold [29,30]. Considering the canonical trans-

formation ofvariations given by [6]: 

 

(q ,q ,p ,p ) (q' ,q' ,p' ,p' )N1 2 1 2 1 2 1 2
                                              (23) 

 

where N is defined as: 

 

 
 

 

 

2a a c a c a 1 b1 1 1 1 1 1 11

2a a c a c a 1 b2 2 2 2 2 2 2N 2

0 a b a 1 b a c1 1 1 1 1 1

0 a b a 1 b a c2 2 2 2 2 2

  
 
 
  

  
 
 
                 (24) 

 

where 

 

1/2

2l1 1a1 22 1 / 2
1

 
 
   
  ;

1/2

2l1 2a2 22 1/ 2
2

 
 
   
   

 

2 2l 1 2H ; l 1 2H1 02 2 021 2
     

 
 

2 2
b ; b1 2

l l1 2
 

; 

H H11 11c ; c1 2
l l1 2

 
 

                                (25) 

 The Hamiltonian H defined in equation (7) is reduced to the fol-

lowing form by help of the transformation given by (23). 

   
1 2 1 2

1 2 1 2

1 1'2 2 '2 '2 2 '2H p q p q
1 1 1 2 2 22 2

' ' ' 'h q q p p2 1 21
3

   

         
  

 

where 

 

α=α1+α2; γ=γ1+γ2 

 

The Hamiltonian H3 and H4 can be expanded as follows; 

 

3 3 3 3H H p H p H q H q3 0003 0030 0300 30002 1 2 1

2 2H q q H q p ............ H q p p2100 2 2010 1 1011 1 1 21 1

    

  
 

 

4 4 4H H p H p H q4 0004 0040 04002 1 2

4H q ............ H q q p p4000 1111 1 2 1 21

  

  
                                          (27) 

The coefficients of third and fourth terms of of 1 2 1 2

h   
and 

1 2 1 2

h '   
 are given in the appendices (1). 

For further investigation the Hamiltonian is reduced to a more 

convenient form, by the canonical transformation defined below 

as: 

 

1 i
q ' q" p" ;1 1 1

2 1
 



1
p ' i q" p" ;1 1 1 1

2
  

 
 

1 1
q ' q" p" ;2 2 2

2 2
  



1
p ' i q" ip" .2 2 2

2
   

                            (28) 

 

Thus, the Hamiltonian (26) is reduced as: 

 

1 2 1 2

1 2 1 2

" " " "H i q p i q p1 1 1 2 2 2

" " " "h ' q q p p2 1 21
3

    

    
    


                                   (29) 

 

The other coefficients of third order terms are obtained by the 

formula and are given in appendices (2, 3). 

 

1 2 1 2 1 2 1 2 1 2 1 2

1 1 2 2

h ' (x iy )

1 2

2 2

            

   
    

   
    (30) 

 

All the third order terms from the Hamiltonian (29) is nullified by 

using Birkhoff’s transformation
'' '' ''' '''(q ,p ) (q ,p )j j j j

, provided third 

order resonance does not occur. This transformation is introduced 

by means of the generating function which is given as follows: 

 

'' ''' ''' '''s q p q p s s ;1 1 2 2 3 4   
                                                             (31) 

 

Where 

 

s s''' '' 3 4q q ;i i ''' '''p pi i

 
  

 
 

 

s s'' ''' 3 4p p ;i i '' ''q qi i

 
  

  (i 1,2)                                                        (32) 

 

Using equation (29) and (32); expanding and equating the terms of 

the same degree on the two sides, we obtain: 

'' '' ''' ''' '' '' ''' '''H' (q ,q ,p ,p ) H (q ,q ,p ,p );2 1 2 1 2 2 1 2 1 2
 

 

2 s sH ' H'' '' ''' ''' 3 32 2H ' (q ,q ,p ,p )3 1 2 1 2 ''' ''' '' '''p p q pi 1 i i i i

'' '' ''' '''H (q ,q ,p ,p );3 1 2 1 2

   
   
      


 

 

2 s H ' s H4 2 4 2 K 0;4''' ''' '' '''p q q pi 1 i i i i

    
    
        

 

2 s H' s H3 3 3 3H' H K .4 4 4''' '' '' '''p q q pi 1 i i i i

    
     
                                      (33) 

 

Where K4 is the term other than the homogeneous ones in q1p1 

and q2p2. By application of implicit function theorem, inEquation 

(33) the new variables
''' '''q and p1 2 can be replaced by 

'' ''q and p1 2  on 

 (26) 
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both sides of equation (41). Considering autonomous system we 

have,

s s3 4 0
t t

 
 

  . 

If we put  

 

1 2 1 2

1 2 1 2

'" '" "' "'
H h q q p p3 2 1 21

3

    
     
  

 

And 

 

1 2 1 2

1 2 1 2

'" '" "' "'
s g q q p p3 2 1 21

3

    
     
                                  (34) 

 

Equation (33) yields: 

 

1 2 1 2

1 2 1 2

ih ' , ,
g , ,

( ) ( )1 1 1 2 2 2

   
   

        
                                       (35) 

 

The new Hamiltonian inclusive of the fourth order terms can be 

found with help of equation (33) which is given as follows: 

 
''' ''' ''' ''' ''' ''' 2H ' i q p i q p c (q p )1 1 1 2 2 2 20 1 1

''' ''' ''' ''' ''' ''' 2c (q p )(q p ) c (q p ) ...11 1 1 2 2 02 2 2

    

                                         (36) 

 

Where 

 

''' ''' ''' ''' '''2 '''2K H (q ,q ,p ,p ) h ' q p4 4 1 2 1 2 2020 1 1

''' ''' ''' ''' '''2 '''2h ' (q p )(q p ) h ' q p ;1111 1 1 2 2 0202 2 2

 

 
 

 

And c20, c11, c02 are given in appendices. 

 

Now we apply KAM- theorem which is stated as follows: 

If the Hamiltonian of the perturbed motion is such that is satisfy 

the mentioned given conditions as: 

1) If the characteristics equation of the system H2 has pure im-

aginary roots such that it holds the condition  

 

n n 0; when n n 41 1 2 2 1 2

(n are int egers )j

     

 
 

2) 
2 2D c c c 020 11 1 2 022 1

       
 

 

If both the conditions are satisfied then the equilibrium points are 

stable. 

The value of D is calculated with the help of following formula: 

 

2 2D c c c ;20 11 1 2 022 1
      

 
 

Fig 6-9 shows the values D for different values of radiation pres-

sures and oblateness parameter. It is observed that D ≠0, for any 

values of oblateness parameter. Hence, it is found that the equilib-

rium points are stable.Fig 10 shows the values of D for different 

values of eccentricity, taking oblateness parameter as fixed and by 

varying radiation parameter. Again, it is found that D≠0. Hence, 

the equilibrium points are stable. 

 

 
Fig. 6: A2 Vs D for Μ=0.001, E=0.02. 

 

 
Fig. 7: A2 Vs D for Μ= 0.035, E=0.02. 

 

 
Fig. 8: A1 Vs D for Μ= 0.001, E=0.02. 

 

 
Fig. 9: A1 Vs D for Μ= 0.035, E=0.02. 
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Fig. 10: "E" VsD for A1=0.0001, A2=0.002. 

6. Stability in the resonance case 

Case 1) ω1= 2ω2 

In the resonance case ω1= 2ω2, the Birkhoffs transformation

(q '' ,p '' ) (Q ,P )j j j j
 is used. It is not possible to cancel whole 

H3

of the Hamiltonian H .In this case 
H3  retains two resonant terms 

with coefficients 
h'1002 and 

h'0210 . Thus the Normalised form of 

the Hamiltonian is written as; 

 

2H i( Q P Q P ) h ' Q P1 1 1 2 2 2 1002 1 2

2h ' Q P .....0210 12

    


                                      (37) 

 

For further investigation following two canonical transformation 

is used as: 

 

1 0 0Q (Q iP );1 1 11/2( )1

 


 
 

1 0 0Q (iQ P );2 2 21/2( )2

 


1/2( ) 0 01P ( iQ P );1 1 12


  

 
 

1/2( ) 0 02P (iQ iP );2 2 22


 

 
 

And 

 

0 1/2Q (2r ) sin( )1 1 11
  

                                                              (38) 

 

0 1/2P (2r ) cos( );1 1 11
   0 1/2Q (2r ) sin2 22

 
                             (39) 

0 1/2P (2r ) cos1 22
 

 
 

where 

 

y1002sin 1 2 2 1/2(x y )
1002 1002

 


 
 

x1002cos 1 2 2 1/2(x y )
1002 1002

 


                                                         (40) 

 

The Hamiltonian (29) is reduced to the following polar form as: 

 

2 2H 2 r r (x y ) r2 1 2 2 2 21002 1002

2r sin( ) o((r r ) )1 1 2 1 2

     

     
                                    (41) 

 

The nonlinear stability of the equilibrium points is determined by 

Markeev [31]. Accordingly, if 
D c 2c 4c 01 20 11 02   

and

2 2D (x y ) 0;2 1002 1002
  

 hold simultaneously then the equilibrium 

points are stable otherwise unstable. 

From Figs. 11-14, it is clear that for no values of the radiation 

pressure and oblateness parameter the expression
D 01   and 

D 02 
are true simultaneously. This clarify that the equilibrium 

points are unstable. Fig 15 depicts the value of
D and D1 2  by con-

sidering oblateness parameterasconstant and by varyingthe eccen-

tricity. Hence, it followsthat the motion is unstable in thereso-

nance caseω1= 2ω2. 

 

 
Fig. 11: A2 VsD1, D2for A1=0.0001, Β1=0.001, Β2 =0.002. 

 

 
Fig. 12: A2 VsD1, D2for A1=0.0002, Β1=0.002, Β2 =0.003. 

 
Fig. 13: A2 VsD1, D2 ForA1=0.0001, Β1=0.001, Β2 =0.002. 
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Fig. 14: A1 VsD1, D2 for A2=0.0001, Β1=0.001, Β2 =0.002 

 

 
Fig. 15: “e” vs D1,D2 for A1=0.0001,A2=0.0002, β1=0.001, β2 =0.002. 

 

Case (2) ω1= 3ω2. 

In the resonance case ω1= 3ω2, it is possible to cancel whole of 

H3 of theHamiltonian H but 
H4 retains the resonance terms and 

the terms with the same degree of canonical variables. Thus the 

normalized form of the Hamiltonian is written as: 

 

2 2H i( Q P Q P ) c Q P1 1 1 2 2 2 20 1 1

2 2 3c Q P Q P c Q P h ' Q P11 1 1 1 2 02 1003 12 2 2

3h ' Q P .....0310 12

     

  


                                     (42) 

 

Again, applying the canonical transformation by means of polar 

coordinates given as: 

 

0 1/2Q (2r ) sin( )i i i1
  

 
 

0 1/2P (2r ) cos( );i i i1
   (i 1,2)                                                 (43) 

 

Where 

 

02 
 

 

x1003sin 1 2 2 1/2(x y )
1003 1003

 


 
 

y1003cos 1 2 2 1/2(x y )
1003 1003


 


                                                         (44) 

 

The polar form of the normalized Hamiltonian reduces to the fol-

lowing form: 

 

2 2H 3 r r c r c r r c r2 1 2 2 20 111 2 021 2

2 2 1/22 {3( (x y ))}.r (r r )2 1 21003 10033

5/2sin( 3 ) o((r r ) )1 2 1 2

      


 

    
                                 (45) 

 

For sake of simplicity we denote 

a c 3c 9c ;20 11 02

2 2 1/2d 3 (x y )2 1003 1003

  

  
                                                           

(46) 

 

The stability problem can be resolved by application of the Mar-

keev theorem.  

Accordingly if; 

1) 
2 2(x y ) 0 and d a
1003 1003

  
are simultaneously satisfied 

then the equilibrium points are unstable and if 
d a

 then it 

is stable. 

2) When 
2 2(x y ) 0 and d 0
1003 1003

  
 are satisfied simultane-

ously then also, it is stable. 

3) If 
2 2(x y ) 0 and d 0
1003 1003

  
then the stability question is 

decided by the analysis of higher order terms in the normal 

form. 

From figs 16, 17 and 19 it is clear that,
2 2(x y ) 0
1003 1003

 
 and the 

condition 
d a

 are satisfied, which states that the equilibrium 

points are stable. From Fig. 18 it is observed that for some combi-

nation of oblateness parameters and radiation parameters either 

d a
 or 

d a
.This states that for some cases it is stable and for 

some it is notstable. Fig 20 depicts the values of 
d and a

by vary-

ing the eccentricity. Here, it is observed that
d a

, hence equilib-

rium points are stable. 

 

 
Fig. 16: A2 vs ‘a’ and‘d’ for A1=0.0001, β1=0.001, β2 =0.001. 
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Fig. 17: A2 Vs ‘A’ and ‘D’ For A1=0.0002, Β1=0.002, Β2 =0.002. 

 

 
Fig. 18: A1 Vs ‘A’ and‘D’ For A2=0.0001, Β1=0.001, Β2 =0.002. 

 

 
Fig. 19: A1 Vs ‘A’ and ‘D’ for A2=0.0001, Β1=0.002, Β2 =0.002. 

 

 
Fig. 20: “E" Vs "A" And "D” For A1=0.0001, A2=0.0002, Β1 =0.001, 

Β2=0.002 

7. Discussion and conclusion 

The stability of the triangular equilibrium points in ER3BP is in-

vestigated considering both the primaries are radiating and oblate; 

under both non resonance and resonance case. Recently [32] stud-

ied nonlinear stability of the triangular points considering both the 

primaries as radiating in ER3BP in non-resonance case .It was 

found that the except for some values of radiation pressure the 

triangular points are stable. The resonance condition was also 

studied by [33] considering only radiating primaries and observed 

that the motion is stable for third order resonance but unstable for 

fourth order resonance. [34] Studied the nonlinear stability in 

CR3BP taking radiating and oblate primaries in resonance case. It 

was observed that in resonance cases ω1= 2ω2 the motion is un-

stable while for ω1= 3ω2, motion is stable for all values of radia-

tion pressures taken. [35] studied the nonlinear stability in CR3BP 

in non-resonance case considering both the primaries as oblate 

luminous spheroid and found that except few cases considered, the 

triangular points are stable .It was observed that in general the 

stability character remains same even if oblateness factor is con-

sidered apart from radiation factor in circular cases. .  

The following observation has been made regarding the nonlinear 

stability in both resonance as well as non-resonance case consider-

ing the luminous oblate spheroid in 

ER3BP. 

It is found that 1 2 
corresponds to the boundary region of the 

stability for the system, whereas the other two cases 

2 , 31 2 1 2     
 correspond to the resonant cases.  

It is noticed that ω1 increases with increasing μ whereas ω2 de-

creases, and becomes equal to the critical value (i.e. μ = μc). 

In non-resonance case, there in no cases where D=0. Hence it is 

found that theequilibrium points are stable.  

In resonance case ω1= 2ω2, it is clear from Fig 11-15 that in no 

case
D 01   and 

D 02 
holds simultaneously true. Hence it fol-

lowsthat the motion is unstable. 

In resonance case ω1= 3ω2, for some cases it is stable and for 

some it is unstable. 
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Legends: 

1) Correlation between ω1 and ω2 for A1=0.0001, A2=0.0002, β1=0.001, 

β2=0.002. 
2) Correlation between ω1 and ω2 for A1=0.0001, A2=0.0003, β1=0.001, 

β2=0.002. 
3) Correlation between ω1 and ω2 for A1=0.0002, A2=0.0001, β1=0.001, 

β2=0.002. 

4) Correlation between ω1 and ω2 for A1=0.0001, A2=0.0001, β1=0.002, 

β2=0.003. 

5) Correlation between ω1 and ω2 for A1=0.0005, A2=0.0005, β1=0.004, 

β2=0.005. 
6) A2Vs D for μ=0.001, e=0.02. 

7) A2Vs D for μ= 0.035, e=0.02. 

8) A1Vs D for μ= 0.001, e=0.02. 
9) A1Vs D for μ= 0.035, e=0.02. 

10) "e" vs D for A1=0.0001, A2=0.002. 

11) A2vs D1, D2 for A1=0.0001, β1=0.001, β2 =0.002. 
12) A2vs D1, D2 for A1=0.0002, β1=0.002, β2 =0.003. 

13) A2vs D1, D2 for A1=0.0001, β1=0.001, β2 =0.002. 

14) A1vs D1, D2 for A2=0.0001, β1=0.001, β2 =0.002. 
15) evs D1,D2 for A1=0.0001,A2=0.0002, β1=0.001, β2 =0.002. 

16) A2vs ‘a’ and‘d’ forA1=0.0001, β1=0.001, β2 =0.001. 

17) A2vs ‘a’ and‘d’ forA1=0.0002, β1=0.002, β2 =0.002. 
18) A1vs ‘a’ and‘d’ forA2=0.0001, β1=0.001, β2 =0.002. 

19) A1vs ‘a’ and‘d’ forA2=0.0001, β1=0.002, β2 =0.002. 

20) “e" vs "a" and "d” for (A1=0.0001,A2=0.0002, β1 =0.001 ,β2=0.002. 
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