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Abstract 
 
This paper presents the dynamics in the restricted problem with perturbations i.e. the circular restricted three body problem by consider-
ing one of the primaries as oblate and other one having the solar radiation pressure and all the masses are variable (primaries and infini-
tesimal body). For finding the autonomized equations of motion, we have used the Meshcherskii transformation. We have drawn the 
libration points, the time series, the zero velocity curves and Poincare surface of sections for the different values of the oblateness and 
solar radiation pressure. Finally, we have examined the stability and found that all the libration points are unstable. 
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1. Introduction 

The restricted problem is the common model in the present age for 
the scientists in Mathematics and Astrophysics. Meshcherskii [1] 
explained the mechanics of bodies with variable mass. Szebehely 
[2] explained about the orbital motion, stability,and periodic orbits 
in his book "Theory of orbits". Chernikov [3] discussed the re-
stricted three body problem (Sun-Planet-Particle) with the effects 
of solar radiation pressure. He found the six libration points and 
discussed the stability by Lyapunov's methods. Schuerman [4] 
explored the Roche potential with the effect of radiation pressure 
due to one component of a binary system. He demonstrated that 
the energy considerations of the modified Roche potential should 
have a greater tendency to form rings. Subbarao [5] investigated 
the stability of the triangular points of equilibrium points in the 
restricted three body problem with oblate primary. He observed 
that the triangular solutions form nearly equilateral triangles with 
the primaries and the range of the mass parameter which leads to 
stable triangular solution decreases. Bhatnagar [6, 7] studied the 
effect of oblateness in the potential on the libration points in the 
restricted three body problem and observed that the collinear libra-
tion points are unstable and for triangular points the range of sta-
bility decreases or increases. He also determined the mean mo-
tions and characteristic exponents at these points. Simmons [8] 
investigated the restricted 3-body problem with radiation pressure 
and observed that nine libration points exists, five in the plane of 
motion and four in the out of plane. Singh [9] studied the stability 
of triangular points in the generalized photogravitational restricted 
three body problem with oblate primary, and observed that the 
range of stability affected by radiation factor and oblateness. Ab-
dulRaheem [10] investigated the stability of equilibrium points 
under the influence of the Coriolis and centrifugal forces together 
with the effects of oblateness and radiation pressure of the prima-
ries. It is observed that the collinear points are unstable and the 
triangular points are conditionally stable depending on the radia-
tion factor and oblateness. Singh [11] investigated the stability of 

equilibrium points in the restricted three body problem in which 
the masses of the luminous primaries vary isotropically in accord-
ance with the unified Meshcherskii law. They found that the col-
linear points are unstable and the triangular points are conditional-
ly stable in the autonomized system. Singh [12] investigated the 
positions and the linear stability of an infinitesimal body around 
the equilibrium points in the Robe's circular restricted three body 
problem, with the assumptions that the hydrostatic equilibrium 
figure of the first primary is an oblate spheroid and the second 
primary is an oblate body as well. He examined linear stability and 
found that the points near the center of the first primary are condi-
tionally stable, while the others are unstable. Abouelmagd [13], 
[14] investigated the stability and periodic orbits in the restricted 
three body problem under the effects of oblateness and radiation 
pressure. He observed that the collinear points are unstable while 
triangular points are conditionally stable depending on the radia-
tion pressure factor and oblateness. And also the elements of peri-
odic orbits around equilibrium points are affected by oblateness. 
Abdullah [15] investigated the libration points and stability of the 
restricted four body problem with one of the primaries as oblate 
body and the infinitesimal body is taken as variable mass. Due to 
the oblateness, the triangular configuration becomes isosceles 
triangular configuration. They found the seven libration points out 
of which three are asymptotically stable and four are unstable. 
Mittal [16] investigated the stability of the Lagrangian solutions 
for the restricted four-body problem with variable mass. They 
found at most eight libration points in which two were collinear 
and rests were non-collinear and observed that all the libration 
points are unstable. 
We have studied the dynamics in the restricted problem with per-
turbations in which the masses of the primaries as well as the mass 
of the infinitesimal body vary with time and one of the primaries 
is taken as oblate body and other one as radiation pressure. We 
have studied our problem in various sections. In the first section, 
we have introduced the problem. In the second section, we have 
evaluated the equations of motion of the infinitesimal variable 
mass in the cartesian form and in the autonomized form under the 
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effects of the oblateness and radiation factor. In the third section, 
we have performed the numerical analysis (libration points, time 
series, zero velocity curves and Poincare surface of sections) for 
the different values of the parameters. In the fourth section, we 
have examined the stability of the libration points. And finally in 
the fifth section, we have concluded the problem. Our problem has 
many applications in this space age particularly in the Astrophys-
ics.  

2. Equations of motion 

 
 
Fig. 1: Configuration of the Circular Restricted Three Body Problem when 
One of the Primaries, Oblate Body and other One as a Solar Radiation 
Pressure and All the Masses are Taken As Variable. 

 
Let the masses of the primaries be m1 and m2 and the mass of the 
infinitesimal body be m, all the masses vary with time. The prima-
ries are revolving in the circular orbits around their center of mass 
which is considered as origin. The line joining these primaries is 
taken as x-axis and the perpendicular line of x-axis and passing 
through the origin is taken as y-axis. The line through the origin 
and perpendicular to the plane of motion of the primaries is taken 
as z-axis. Let us consider the synodic coordinate system, initially 
coincide with the inertial coordinate system, with angular velocity 
 about z-axis. All the configuration are shown in figure1. Fol-
lowing the procedure of Abdullah [15], we can write the equations 
of motion of the infinitesimal variable mass in the circular restrict-
ed three body problem under the effects of oblateness and radia-
tion pressure, when the variation of mass is non-isotropic and 
originates from one point as 
 
m 2(x y) (x y 2 y x)
m

(x x )q (x x ) 3 (x x )1 1 1 2 2 2 2 ,
3 3 5r r 2r1 2 2

      

      
  


  

 

 
m 2(y x) (y x 2 x y)
m

q y 3 y1 1y 2 2 ,
3 3 5r r 2r1 2 2

      

   
  


  

 

 

z q z 3 zm 1 1 2 2z z ,
3 3 5m r r 2r1 2 2

   
    


                                                    (1) 

 

Where, 2 2 2 2r (x x ) y z ,(i 1,2),ii      are the distance from the 

primaries to the infinitesimal body, 
Gmi , (i 1, 2),i

m m1 2
  


are the masses of the primaries, q1 is the 

solar radiation factor, and oblateness factor
2 2a c1 1 ,

25R


  a1, c1 are 

the semi axes of the oblate body, R is the distance between the 

primaries, angular velocity 
G(m m )2 31 2 (1 ),

3 2R


     G is the 

gravitational constant.  
Using Meshcherskii [2] transformation  
 

x R(t), y R(t), z R(t),

dt 2R (t), r R(t), (i 1,2),i i
d

     

   


 

 
The particular solutions of the Gylden-Meshcherskii problem  
 

0(t) , x R(t), x R(t),1 1 2 22R (t)


       

 
And the unified Meshcherskii law  
 

0 10 20(t) , (t) , (t) ,1 2R(t) R(t) R(t)

(t) (t) (t),1 2

  
     

    

 

 
m 20m , R(t) a t 2b t c,
R(t)

     

 

Where a,b,c, , , ,m0 10 20 0   are constants.  

 
2' (a t b) '' (a c b )

x , x ,
3R(t) R (t)

       
    

 
2' (a t b) '' (a c b )

y , y ,
3R(t) R (t)

       
    

 
2' (a t b) '' (a c b )

z , z .
3R(t) R (t)

       
    

 
We transform the system (1) to the autonomous form 
 

'' 2 ' (a t b) ' ,0


       


 

 

'' 2 ' (a t b) ' ,0


       


 

 

'' (a t b) ' . 



  


                                                         (2) 

 
Where, 
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1 2 2 2 2((a t b) )( )02

1 2 2((a t b) ) (a t b)
2

q10 1 20 20 ,
31 2 2 2

        

        

   
  

  

 

 

2 2 2 2( ) ,ii     2ac b ,   20 10R, R.1 2
0 0

 
   

 
 

 
Dash (') is the differentiation w.r.t.  . Taking unit of mass, dis-
tance and time at initial time t0 such that 
 

31, R 1,G 1, 1 ,a t b (constant)0 0 0 14
             

 
So, 1 k,   where k is constant of a particular integral of Gylden-

Meshcherskii problem. 
Introducing the mass parameter  expressed as 
 

110 201 , ,0 ,
20 0

 
       

 
 

 
Where  is the ratio of the mass of the primaries to the total mass 
of the primaries. 
Finally, the autonomized system (2) becomes 
 

'' 2 ' ' ,0 1


      


 

 

'' 2 ' ' ,0 1


      


 

 

'' ' .1


   


                                                                   (3) 

 
Where, 
 

1 2 2 2 2( k 1 )( )1 02

1 2 2( k 1) 112

k(1 )q k k1 ,
31 2 2 2

       

        

  
  

  

 

 
2 2 2 2( ) ,ii     , 1 .1 2     

 

3. Numerical analysis 

3.1. Libration points 

We can find the equilibrium points from the solution of the equa-
tions 
 

0, 0, 0,         

 
i.e. 
 

2 2
( 1 )1 1

(1 )( ) ( 1)1
2 2 2 3/2 2 2 2 3/2

(( ) ) (( 1) )

3 ( 1)
0,2 2 2 5/2

2(( 1) )

k

kq k

k
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     

       

   

   

    

   


      

 
 
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             (4) 
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  
      

      


 

     




      

                            (5) 
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2 2 2 3/2
(( 1) )
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kq
k

k

k

 
 

   


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

   


  

  

 
   


   

                                    (6) 

 
Here, we have shown the libration points graphically and found at 
most nine libration points in both ( , )  plane (Fig. 2, Fig. 3 and 

Fig. 4) and ( , )   plane (Fig. 5 and Fig. 6). In the ( , )   plane, we 

have found seven libration points when there were no effects of 
oblateness and radiation pressure (Fig. 2). After taking the effect 
of oblateness only, we have found nine libration points (Fig. 3) 
and considering the effect of solar radiation pressure only, we 
have found seven libration points which are moving towards the 
origin (Fig. 4). In the ( , )   plane, we have found five libration 

points in all the cases but after considering the effects of oblate-
ness and solar radiation pressure, we have found that the libration 
points are moving towards the origin (Fig. 5, Fig. 6).  
 

i) ( , ) plane 0.2, k 0.4, 0.0191          

 

 
 

Fig. 2: Locations of equilibrium points at 0, q 1.1    
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Fig. 3: Locations of Equilibrium points at 0, q 1.1  

 
Fig. 4: Locations of Equilibrium points at 

0,{q 1(Red), q 0.8(Orange)}.1 1     

ii) 
( , ) plane 0.2, k 0.4, 0.0191       

  
 

 
Fig. 6: Locations of Equilibrium points at 

0,{q 1(Red), q 0.8(Orange)}.1 1     

 
 

 
Fig. 6: Locations of Equilibrium points at 

0,{q 1(Red), q 0.8(Orange)}.1 1     

3.2. Time series 

We have drawn the time series in between ( , )  and ( , ),  and 

observed that when we are considering the effects of oblateness 
and solar radiation pressure, they have shifted by some phase an-
gles in all the series (Figs. 7, 8, 9, 10).  
 

 
 

Fig.7: Time Series for q 1,{ 0(Magneta), 0.1(Green)}.1       

 

 
 

Fig.8: Time Series for q 1,{ 0(Magneta), 0.1(Green)}.1       
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               Fig.9: Time Series for 0,q {1(Magneta), 0.8 (Red)}.1    

 

 
         Fig.10: Time Series for 0,q {1(Magneta), 0.8 (Red)}.1    

3.3. Zero-velocity curves 

We have drawn the zero velocity curves around all the libration 
points for the fixed values of the parameters in both    plane 

(Figs. 11, 12, 13) and    plane (Fig.14, 15, 16). 

i) 
( , ) plane 0.2, k 0.4, 0.019,1       

 
In this section, we have considered the oblateness 0.1,   and 

solar radiation pressure q 1,1  in this case, we have drawn seven 

zero velocity curves (Fig. 11) as Green at energy constant 
1.67183, Blue at energy constant 1.19934, Purple at energy con-
stant 1.4973, Magneta at energy constant 1.48138, Orange at en-
ergy constant 1.51643, Cyan at energy constant 1.48517, Black at 
energy constant 71. 3618 (Fig. 12). Again when we have consid-

ered the oblateness 0,   and solar radiation pressure q 0.8,1  in 

this case, we have drawn five zero velocity curves (Fig. 13) as 
Green at energy constant 1.2374, Blue at energy constant 
0.876046, Purple at energy constant 1.20244, Magneta at energy 
constant 1.21705, Pink at energy constant 4.39616. 
 

 
 

Fig.11: Zero velocity curves with oblateness 
 for different seven values of energy constants   

 
Fig. 12: The zoomed part of figure 11 near the primary m2 

 

 
Fig.13: Zero velocity curves with radiation pressure 

 for different five values of  energy constants   

 

ii) 
( , ) plane 0.2, k 0.4, 0.019,1         

 
In this section, we have considered the oblateness 0.1,   and 

solar radiation pressure q 1,1  in this case, we have drawn four 

zero velocity curves (Fig. 14) as Green at energy constant 
1.63919, Red at energy constant 1.38101, Blue at energy constant 
1.47107, Black at energy constant 71. 3618 (Fig. 15). Again when 
we have considered the oblateness 0,   and solar radiation pres-

sure q 0.8,1  in this case, we have drawn four zero velocity curves 

(Fig. 16) as Green at energy constant 1.20889, Red at energy con-
stant 1.07704, Blue at energy constant 1.12865, Black at energy 
constant 4.39616. 
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Fig.14: Zero velocity curves with oblateness 
 for different four values of  energy constants   

 

 
Fig.15: The zoomed part of figure 14 near the primary m2   

 
 

 

 
Fig.16: Zero velocity curves with radiation pressure 

 for different four values of energy constants. 
 
 

 

3.4. Poincare surface of section 

We have also drawn the Poincare surface of sections with and 
without oblateness (Fig. 17) and observed that there is minor 
effect of oblateness and when we have drawn the Poincare surface 
of section with and without solar radiation pressure (Fig. 18), then 
we observed that the Poincare surface of sections are shrinking. 
 

 
 

Fig.17: Poincare Surface of Sections  

0,q 1(Green), 0.1,q 1(Red).1 1         

 
 

 
Fig.18: Poincare Surface of Sections  

0,q 1(Green), 0,q 0.8 (Black).1 1         

4. Stability of the equilibrium points of the au-
tonomized equations 

Following the procedure given by Mccuskey [17], we can examine 
the stability of the autonomized equations. When  
 

a, b, c,0 0 0             

 
As 
 
a'' 2 b ' a' a( ) b( ) c( ) ,0 1 0 0 0            

 

b'' 2 a ' b' a( ) b( ) c( ) ,0 1 0 0 0            

 
c'' c' a( ) b( ) c( ) ,1 0 0 0                                               (7) 

 
Where a, b and c are the small displacements of the infinitesimal 

body from the libration point. Suffix zero denotes the value at the 
libration point.  

To solve equation (7), let a Ae , b Be ,c Ce ,      where A, B 

and C are parameters.  
Substituting these values in equation (7) and rearranging, we get 
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2A( ( ) ) B(2 ( ) ) C( ) 0,1 0 0 0 0               

 
2A(2 ( ) ) B( ( ) ) C( ) 0,0 0 1 0 0              

 
2A( ) B( ) C( ( ) ) 0,0 0 1 0                                     (8) 

 
The equation (8) will have a non-trivial solution for A, B and C if 
 

2 ( ) (2 ( ) ) ( )1 0 0 0 0

22 ( ) ( ) ( ) 0,0 0 1 0 0

2( ) ( ) ( )0 0 1 0

             

             

          

 

 
6 5 4 2 23 (4 3 ( ) ( ) ( ) )1 0 0 00 1

3 2 2( 4 2( ) 2( ) 2( ) )1 0 0 00 1

2 2 2 2( ( ) ( ) ( ) ( ) ( )0 00 0 0

2 24 ( ) ( ) ( ) ( ) ( ) ( )0 0 0 0 0 00 1

2 2( ) ( ) ) ((0 0 11 1

                

            

              

              

        
2 2) ( )0 0

2( ) ( ) ( ) ( ) ( ) ( ) ( ) )0 0 0 0 0 00

2 2(( ) ( ) 2( ) ( ) ( ) ( ) ( )0 0 0 0 00 0

2( ) ( ) ( ) ( ) ( ) ) 0,0 0 0 00

  

                

               

           

       (9) 

 
Here, we have examined the stability of the libration points by 
finding the characteristic roots of equation (9) numerically. We 
have calculated the characteristic roots for the different values of 

the libration points at 0.2, k 0.4, 0.0191      and observed that 

in all the cases, there exists at least one positive real characteristic 
root. Hence, it can be concluded that all the libration points are 
unstable. 

5. Conclusion 

Here, we have investigated the dynamics in the restricted problem 
by considering one of the primaries as oblate and other one as 
solar radiation pressure and all the masses are variable (primaries 
as well as infinitesimal body). We have determined the autono-
mous equations of motion which is different from the equations of 
motion found with only infinitesimal variable mass by the factors 

, q , .1 1   And in the next numerical analysis section, we have 

drawn libration points (Figures 2, 3, 4, 5, 6), the time series (Fig-
ures 7, 8, 9, 10), the zero velocity curves (Figures 11, 12, 13, 14, 
15, 16), the Poincare surface of sections (Figures 17, 18) with the 
effects of oblateness and solar radiation pressure. And observed 
that the libration points are moving towards the origin, the time 
series are shifting by some phase angles, and the Poincare surface 
of sections are shrinking due to the perturbations. Finally we have 
examined the stability for each libration points and found that all 
the libration points are unstable. 
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