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Abstract

This paper explore pulsating Curves of zero velocityof the infinitesimal mass around the triangular equilibrium points with oblate and
triaxial rigid body in the elliptical restricted three body problem(ER3BP).
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1. Introduction

This paper analyzed the effects of triaxiality and oblateness of
both the primaries on the pulsating Curves of zero velocityof the
infinitesimal mass moving around the triangular equilibrium
points in the elliptical restricted three body problem . It is general-
ly considered that the heavenly bodies are spherical in shape, but
actually it has been observed that these bodies are oblate spheroid
or triaxial rigid body. There are many planets such as Earth, Jupi-
ter and Saturn which are sufficiently oblate to some degree .Not
only this, there are some stars namely Archid, Archerner, Antares,
Altairand and Luyten which are either sufficiently oblate or triaxi-
al rigid bodies . The study of these heavenly bodies is significant
in study of celestial mechanics and stellar system. The lacks of
sphericity of heavenly bodies is one of the reasons of large pertur-
bation. In addition to oblateness of the celestial bodies the triaxial-
ity, atmospheric drag, and solar wind are some other causes of the
perturbations.

Many authors such as [1-5] have studied the elliptical restricted
three body problem in detail. The influence of eccentricity of or-
bits of the primaries with or without radiation pressure,oblateness
and triaxiality of the primaries are studied by [6-21].

The present study is an attempt to derive the differential equation
governing the motion of the triangular equilibrium points on the
assumption that both the primaries are oblate triaxial rigid body.
The zero velocity curve is plotted by using simulation technique
by varying one or more of the parameters.

This paper has five sections, section-1 provides the introduction,
section-2 the equation of motion;section-3 describes the location
of the triangular equilibrium points;section-4 describes pulsating
zero velocity curves; section-5 draws discussion and conclusion.

2. Equation of motion

Consider two bodies S; and S, of masses m; and m,with m; >
m,which moves in a plane about their common centre of mass O

in Keplerian elliptical orbit having eccentricity e. It is further as-
sumed that the bigger and the smaller primaries having masses m,
andm, and both are oblate triaxial rigid body. A third body p of
infinitesimal mass moves in the plane of motion S; andS, under
their gravitational attraction without affecting the motion of pri-
maries. The motion of both the primaries affects the motion of the
infinitesimal mass. The equation of motion is considered in a fixed
co-ordinate system using dimensional quantities and variables
.The dimensionless variables has been introduced by using the
distance r between the primaries which is given as:

_a(1-e?)
“ 14 ecosv

where a and e are semi-major axis and the eccentricity of the ellip-
tical orbit of the either primary around the other and v is the true
anomaly. Suppose p(x,y) are the co-ordinate of the infinitesimal
mass of the primaries and the line joining the primaries is taken as
X-axis. The Y-axis is taken as the line passing through O and
perpendicular to the X-axis. Let Ry and R, be the dimensionless
distance between the primaries. The equation of motion of the
system with the minor modification as solved by [17,21]) is given
as:

d’x 1 [mk?(x—x) | mpk?(x —x;)
dtz - n2 R13 R23
3Kk%m,(x — x;)(20; — 03)
2R,3%r,2
15 k?my (x — x1)(0y — '52)}’2
2R, 3r, 4
3Kk%m,(x —x,)(20," — 6,")
2R23I‘22
15 k?m, (x — X,) (01" — 0,")y?
2R23I‘24
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d?y [m1k y—-vy1) m,k2(y—y,) 3k%m4 (y-y1)(201— 52) dv dZ _ 1 [mlkz(z_zl) m,k?(z—z,)
a2~ n? + R,3 + 2R, %r; 2 at? z+ 2 ar  dv n? R,3 + R,3 +
3k’my (y=y1)(o1— 0'2)‘]1 _ 15 k’m, (y=y1)(01=05)y? _ 3k2m1(z 21)(201— 0'2)+3k2mz(z_zz)(261’_0'2’) +

2R,%r;2 2R, %4 2R;%r;2 2R,°%r,2
15 kzmz(y_YZ)(cll_czl)yz k2m, (y— Y2)(251 —02 ) 3k?m, (2"~21)(61-03) + 3K2m,(z'~2"5)(01'~0,")

2R,°r,* 2R,°r,2 R,°r;? R,°r,?

mz(Y Yz)(0'1 —03 )] 2.1) 15 k?m, (2-2,)(0;—-0,)y*> _ 15 kzmz(z_zz)(01’—52’)yz] (2)2 —
' 2R.3r; ¢ 2R,3r,* \ar
. d?v
b2 12352 (2.5)

where 01 =(A1—Az) 0, =(A,—A3) ;A = 5R2 ; Ap = R2
s = sggend, b, arethe axis ofthe raxilrgid body of bigger et e complex oston veetors o, andz,
primary of mass m1 whereas 01 = (A} —A)); 0y = (A, —AY); - L piex p “1 2

" are the location of the primaries, which are permanent on the real
Al = R'Z AL = R’Z VAL = R,202 where o ,0,,07ando;, are  axis (%, y)of the system, we have:

oblatenessparameter

wherea’, b’, ¢’ are the axis of the triaxial rigid body of smaller
primary of mass m,, k the Gaussian constant , t*is the dimension-
less time.

3 3
n? =145 (21 — Az = Ag) +5 (28 — Ay — AY)

where

Ri=(x—x)%+(y—y1)?
And

RS = (x—x2)* + (y — y2)* (2.2)
¥
PELY)
Ry
R R
sm) 0 $2(m2) U
Xy,Y) [R5

We shall introduce a rotating co-ordinate system (,y) by substi-
tuting

Z= zZeV
where
Z=X+iY
And
Z=X+iy (2.3)

After introducing the complex vector, the equation of motion (2.1)
takes the following form:

myk*(z-25) k?m, (z-2,)(201-0,)

+3

d?z 1 [m,k?(z—z,)
ac? ~  n2 [ R,? + R,? 2R, 31,2 +
3k*my(z— Zz)(251’—ﬁz’) 3k2m1(2*_2*1)(51_02)+
2R,%r,2 R,%r,2?
3K2m, (2 ~2"5)(01'~05") 15 K’my(2-2,)(01=02)y*
R,%r,2 2R, °r *
15 kzmz(z—zz)(01’—02’)y2]
2R, 3,4 @4
where z* =iy ,z] =iy, and z; = iy, .Now differentiating equa-

tion(2.3) twice with respect to t* and taking help of (2.4), we get:

— — ~P1 o P2
=% = (1+e cosv) 2 =X = (1+e cosv) (26)
where p; and p, are positive and
R 2.7)

b2 az my

where a; and a, are the semi major axis of the elliptical orbits of
the massive primaries described about their centre of mass, and
m,, m, are the masses of the respective bigger and smaller prima-
ries. Further introducing a dimensionless pulsating coordinate
system given by:

p= (%) =x+iy (2.8)
where
_ a(1-e?)
~ 1+ecosv (2.9)

Is the distance between the primaries in which a is a semi-major
axis of the one primary around other? From equation (2.8) and
(2.9), we get:

X(1+ecosv)
a(1—e?)

X =

y(1+ecosv)
a(1-e?)

y= (2.10)

Since these primaries are fixed in the coordinate system, we have
form equation (2.6) and (2.10)

% (1+ecosv)  —-p;  —a
X1 = 2 N . - H
a(l—e?) ~a(l—e?) a
. =x2(1+ecosv) P2 a_2=1_
z a(l—e?) a(l—e?) a a
Here = —=—. Therefore, the fixed location of these primaries in
1 2

terms of coordinate (x,y) system are represented as (—p, 0) and
(1 — 1, 0).The coordinates taken into consideration regarding the
problem of two bodies moving in the elliptical orbit are that ,the
orbit of m; andm, with respect to the centre of mass with semi-
major axis is a; = apand a, = a(1 — p) respectively . In order to
solve the equation of motion a true anomaly v is introduced as an
independent variable from equation (2.8) we havez = rp, replac-

ing

m;k?(z—-z;) _ m;k*(p—p4)
1 23 1) _ My . 1 (211)

where

rZ=p—pil? = (x+w?+y? (212)
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Sincep; = x; = _152( ) omon r;ij; ;tr ;: = (2.23)
myK™(Zz—Z; myK™(P—P2
= 2.13)
R, r2r,> (
’ ’ The equation of motion ofthe two primaries is given by:
q p g \
where
d?r av)? —k? (my+my)
=-rl=) = ——=— (2.24)
ri=lp—pol? = x -1+ W2 +y? (2.14) w7 (@) r
Since Using equation (2.22), the equation (2.24) becomes:
—x, = 1-— @r (d_v)z __ 1 .(@)2 (2.25)
Pz = X2 " ac?z "\ar) T aa—errz \ar :
And Substituting the value of (2.23), the equation (2.25) becomes
3k2my (z-21) (201~ 92) _ 3k2my(p—p1)(201-02) 2 2 2 2
2Rr 2o 219 L () = () (2.26)
Similarly Substituting the values of (2.23) and (2.26) in equation (2.21) we
Wimy(s-2)C01'~0,) _ 3Kma(p=pp) 20’0 2.16) get
2R;3r,? 2127r,5 :
d? . d 1 (p—p1) (p—p2)
Aagain (d_vfz)) + Zlﬁ = a(liez) ['D - ﬁ{m::l-lmz prlfl + m:jfmz przf2 +
9 3my (p=p)@oy=0y) | _3my (p=p)2oy'=03)
my+m 2rf m;+m 2rs
3k*my (2" ~2"1)(01-02) 3k2m1(p*—p*1)(021—:'2) (2.17) 13‘"112 (p"=p 13(0’1 —03) 13 mzz (P*—P*zi(‘fl’—o'z’)
Ry’rq? Lt my+m, rS my+m, s
15 my (p=p1)(01=02)y? 15m, (p- Pz)(01 “72 Ny?
Also my+m, 217 m1+m2 }](2 27)
3k my(z' -z 2)(”1 —0y") _ 3kPma(p'=pp)(01'~02") (2.18) Using
Ry3r 21,5 :
e ’ _a(l-e?») _  m, {_py= M
Similarly T 1+ecosv’  my+m,’ = my+m,’
15k2my (2-21)(01-02)y* _ 15K*my(p—p1)(01-02)y> (2.19) The above expression will be reduced to the following form:
2R3r % 2r2ry7 \&
d?p 1 1 (A-w(p—p1) , K(P—P2)
And ( )+2 dv 1+ecosv [P_F{ r3 =+ T3 =+
3(1-w)(p- P1)(20'1_0'2)+3M(P p2) (20, _0'2) 3(1- ﬂ)(P -p* (01— Uz)
15 k?>m,(z — 2,) (0, — 0,")y? 2rf 2r$ 5
2( 23)(41 2" _ 3K =p" )@/ =02)  15(1-p)(p=p1)(@1-02)y*
2Ry7m, 3 2r]
15u(p—p;)(a:'—0,")y?
———=—1 2 11(2.28
15k*m,(p* — p*,) (01’ — 02")y? 2r] }]( )
2r2r,7 . . . . .
e Replacing= x + iy ,py = x1 +iy1 ,p2 = X + 1y, ,p" =1y ,p1 =
iy,,p5 = iy, in the above Equation (2.28) and equating real and
(2.20) imaginary parts, we get:

Now taking vas an independent variable, substituting all required
above values in equation (2.5), we get:

dp . .
r() 5+ 2]+ ol (@) ]+ (o)
d“v dr av] _ 1 [mik*(p= Pl) mak? (P Pz)
[rdt"2 +2 dt* dt* ] T [ r2rd r2r’
3 k*my(p—p1)(201-02) 3k my(p—p2)(20,'~0, )
21275 212r,5
k?mq(p*—p*)(01—07) | 3k*my(p*—p z)(fH -02")
2,5 + -
r2ry r2r,5
15 k*my(p—p1)(01-02)y* 15 k*my(p—p2) (01~ )y? ](2 21)
2r2ry7 2r2r,7
We have= r = [a(l e )] which is the solution of two body prob-
1+ecosv

lem involving the primariesS;andS,. The integral of angular mo-
mentum of two body problem is given by:

2 av)? — _ .2\,2
(r dt*) a(l—e?k?* (my + my) (2.22)

Differentiating the above equation (2.22), with respect to t*, we
get:

d%x dy 1
—)-2t=——|x
dv? dv 1+ ecosv

1 (A=) —x) pux—x)
2 = 3
3(1 W (x —x1) (201 — 02)
21"1
3u(x x2) (207" — 07")
2r2
_ 150 =) (x = x1) (01 — 03)y?
2r/
15u(x — x3) (07" — 0,)y?
21y
And
ay ax _ 1 _ A (-m-y) |, B3
(dvz) 2 dv 1+ecosv[ nz{ T} + r3 +
3(1-pw) Y-y1)(201—-03) |, 3u(y-y2)(201'-0,") | 3(1—pw)(y—y,)(01—-03)
5 + 5 + 5 +
21y 21y TS
3u(y=y2)(01'=0") 15— (y—y1)(91=02)y* _ 15ﬂ(y—yz)(61’—<rz’)y2}]
3 2r] 217

(2.29)
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Hence the equation of motion of infinitesimal shall be reduced to
the following form by replacing

xp=—px=1-py;=0,y,=0

d?x dy 1
) —2Z=—— |«
dv? dv 1+ ecosv

1 (1—u)(x+u)+u(x—1+u)

" n? 3 e
3(1 — W&+ )20y —03)
2r
3u(x -1+ H)(201' —0y)
* 27"25
_15(1 = W) (x + p)(o1 — 02)y*
217
_ 15u(x — 1+ w)(oy' — 02’)3’2}]
21y
And
2
(50 +2 6 = w7 el + i
3uy (20,'~0") | 3(1-py (91~02) L (o1 —Uz n_
21 rP rs
15(1-p)(01-02)y®

15#(01’—702’)313}] (2.302)

2r] 2r]

The differential equation of motion of the third body P in non-
dimensional barycentre, pulsating and non-uniformly rotating
coordinate system (x, y) is written in the form:

=2y = s () @31
vt = (5) @.22)
Where ' denotes differentiation with respect to v, and
0= xz;ry2 % (1r—1u) n % n (1—;4)2(2;71—02) ”’(2021;2;0'2’) _
3(1—u)2(:§—02)y2 _ 3#(612’;2562’)3/2] 2.33)
Where
n?=1+ %(201 —ay) + % (20{ —03) (2.34)
And
=Gttty
Z2=(x—1+p?+y? (2.35)

Thus we have the equation of motion of an elliptic restricted three
body problem in which both the primaries are oblate and triaxial.

3. Location of equilibrium points

The equilibrium points of the system are the stationary points, so
are given by the equation

20 _ a0 _
Z=T=0 (3.1)

where(2 is given in equation (2.32), so we get:

+u(x—;+u)+3(1 W(x+p) (20, - crz)

22 _ 1 [A-p)(x+p)
x X _[ 3 3 2r¢
3u(x=1+p)(201'~05")  15(1-p)(x+p)(0;-02)y*
2ry 2r]
15#(X—1+#)5‘T1’_Uz’)yz] — 0(32)
21y

And

a-p 3(1-p) (401-30,) | 3p(401'-30,")
[1 n2{ rd + 5+ 217 + 2r
15(1 w(01-0,)y*q1 _ 15#(01 _‘72 Ny*az
2r] }](3 3)

Since y # 0,we have from equation(3.3):

1L (1 ) 301-) (40,-307) | 34 (401’3051 _

U
+ T3 + 2ry 2ry
15(1- M)(U1 o2)y? 15#(01’—62’)3/2] -0

2r{ 2r]

(3.4)
Using the above equation (3.2) and (3.4), we get:
[_nz(l H)+(1 w 15(1—;4)(0‘1—0'2)312 _ 15u(ay'—0,")y? +

2r] 2r]
3(1-p) (201-03) 3(1 W(x=1+p)(01-0,) | 3u(201'-0,")

275 2rf + 2ry
3u(oy' =0 N(x=1+p)
WA ] = 0(35)
And

—H+ [ +3(1 u)(x;rét)(zrl 0'2)

3u2ay’ —Uz’) 15u(0y'—02")y*] _
2r - 21y ] - 0(3'6)

3ux+p)(oy'—02")
ry +

01,05 ,0,' and a,’ are small quantities hence we assume that the
solution of the above equation ifo; #0, 0, # 0,0, # 0 and
S #0as

= 1+ €11 = 1+ €y (37)
where €; and e,are less than 1.
Substituting the values of r; andr, in equation (2.34) we get:
1
x=§—u+(61+62)
V3 2
y=+2[1+2(e + )] (3.8)

Further simplifying the coordinates of triangular equilibrium
points are given by:

(1—#)

8

[5- %=+ [s

37 i ,
tET8a < u)] o’ [ 8 " 8(1-mwl ™
[ { 19_(1 ,4) ]01 [%_(12—:)]024_ %9_

8(1- u)] 02 }](3 9)

4. Different curves of zero velocity

8(1—#) J [1

In order to derive curves of zero velocity of the infinitesimal mass
in elliptical restricted three body problem considering the triaxiali-
ty of both the primaries, multiply equation (2.31) by x ' and equa-
tion (2.32) byy ‘and further add both the equation. Then we obtain

x'x" + y'y" anx, + 3—2 ! (4.1)
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a0

10 o2y 2y 2 092
e B (4.2)
Equation (4.2) can be integrated to give
1r 12 21 _ o0
2 [x Ty ] - f1+ecosv (43)

The presence of the term (1+ecosv) in the denominator of equa-
tion (4.3) gives problem in integrating equation (4.3) to any de-
fined form. The Jacobi integral of the classical circular problem is
not adjusted in elliptical restricted three body problem in usual
sense. In elliptical restricted three body problem Jacobi integral
does not exist and energy along any of the orbit depends on time.
Now, consider the potential function which is represented as fol-
lows:

Q(x,y)
1+ecosv

p(x,y) = (4.4)
So, Q(x,y) depends on the position coordinate of the as well as
the independent variable of the infinitesimal mass. In elliptical
The Jacobi constant is defined as

1 [x2+y2+i a-w ey

1+ecosv 2 n?l n Ty

(1-p) (201—03)
2rf

x?+y'% -

+

uQo'~0,)) _ 30-w)(o1-a)y* _ 3u<n1'—nz’>y2]] _ c(45)

213 278 2ry

The above equation (4.5) describes the curve of zero velocity. The
zero velocity curves pulsate with the frequency of the elliptical
motion of the infinitesimal mass in elliptical restricted three body
problem. Hence, in planar elliptical restricted three body problem,
the zero velocity curves is given as:

[xz+yZ +iz[(1—u) L a-w (231—02)_'_#(261’;02’)_
2 n T1 T2 2ry 2ry

3(1-p)(01-02)y*
2rd

_ 3#(U1’_Uz’)y2]] — C*(46)

2ry
where
C*=C(1+ ecosv)

The zero velocity curve is plotted in Figs.1-26 by varying the pa-
rameters.

475048461534550893/(461168601842738790400 ((x + 1/100)2 + yA)¥2) -+ y2 = 0
= . : . : E

Fig. 1:Zero Velocity Curve
6,=0.003;0,=.0002;6",=0.0007;5",=0.0004.

235124996113060543/(230584300921369395200 ((x + 1/50)> + y)12) -...+ y%2 = 0

6FT
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Fig. 2:Zero Velocity Curve when u=.02,
,=0.003;0,=.0002;0",=0.0007;5",=0.0004.
33589285159008649/(46116860184273879040 ((x + 3/10)2 + y2)12) -+ y2/2 =
6F T L3 =
41 N
oL i
> Of 4
2+ i
-4r i
6. A
6 6
Fig. 3:Zero Velocity Curve When p=0.3,

6,=0.003;0,=.0002;0",=0.0007;",=0.0004.

14395407925289421/(23058430092136939520 ((x + 2/5)2 + y)Y2) - .+ y?%2 =0
= T - — : r

e e T : e
-6 -4 -2 (o] 2 4 6

Fig. 4:Zero Velocity
¢',=0.0007; ¢',=0.0004

Curve When p=04, o, =0.003; o, =

U@ (x- 122 +y)Y2) . +y%2=0

Fig. 5:Zero Velocity Curve when p=0.5, ¢,=0.003; ¢,=.0002; ¢',=0.0007;
¢',=0.0004.
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475048461534550893/(461168601842738790400 ((x + 1/100)2 + y)Y?) ...+ y%2 = 0

3 3

6F

Fig .6:Zero Velocity Curve when p=0.01, o, =0.0005;
¢',=0.0007; ¢',=0.0004.

0, =.0002;

235124996113060543/(230584300921369395200 ((x + 1/50)2 + y?)?) -+ y%2 =0
- v o

T T T
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Fig. 7:Zero Velocity Curve when p=0.02, g, =0.0005;
¢',=0.0007; ¢',=0.0004.
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Fig. 8:Zero Velocity Curve when pu=0.3
0,=0.0005;0,=.0002;5",=0.0003;0",=0.0002.
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6 L3 T J
4t J
oL ]
> 0o 4
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6L : . : . =
6 -4 -2 o 2 a4 6
X
Fig. 9:Zero Velocity Curve When p=0.4,

6,=0.0005;4,=.0002;¢",=0.0003;5",=0.0002.
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10:Zero Velocity Curve when p=0.5,
0,=0.0005;0,=.0002;5',=0.0003;5",=0.0002.
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11:Zero Velocity Curve when p=0.01,
0,=0.005;0,=.002;¢";=0.0005;¢",=0.02.
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12:Zero Velocity Curve when p=0.02,
0,=0.005;0,=.02;0",=0.0005;0",=0.02.
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13:Zero Velocity Curve when p=0.3,

Fig.

6,=0.005;0,=.02;5",=0.0005;5",=0.02.



International Journal of Advanced Astronomy

35

(27 yA)/(2000 ((x + 2/5)% + y?)¥2) +. .+ y?2 =0

Fig. 14:Zero Velocity Curve when pu=0.4, 0,=0.005; 0,=.02; ¢',=0.0005;

0,=0.02.
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Fig. 18:Zero Velocity Curve when p=0.001, ¢,=0.03; 6,=.02; ¢',=0.05;
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Fig. 15:Zero Velocity Curve when p=0.5, ,=0.005; 0,=.02; ¢';=0.0005;
0',=0.02.
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6 : . = v . o

r 5 2 o 2 B
Fig. 22:Zero Velocity Curve when p=0.01, ¢, =0.0002; o, =.0001;
¢',=0.0003; ¢',=0.0002.
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Fig. 23:Zero Velocity Curve when p=0.3, o; =0.0002; o, =.0001;
¢',=0.0003; ¢',=0.002.
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Fig. 24:Zero Velocity Curve when p=0.4, o; =0.0002; o, =.0001;
¢',=0.003; ¢',=0.002.
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Fig. 25:Zero Velocity Curve when p=0.04, o, =0.0008; o, =.0002;
¢',=0.004; ¢',=0.002.
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Fig. 26:Zero Velocity Curve when p=0.4, g, =0.0008; o, =.0002;
¢',=0.004; ¢',=0.002.

5. Discussion and results

The differential equation governing the motion of the triangular
points in elliptical restricted three body has been derived consider-
ing the oblate and triaxial rigid body. The problem is model under
the assumption that the eccentricity of the orbit of the gravitating
bodies is small.

The zero velocity curves considering oblateness and triaxiliaty of
the rigid body has been studied using simulation technique by
varying the parameters. From Fig 1-26 it has been observed that
oblateness and triaxiliaty of either or both the primaries affect the
nature of zero velocity curves. From Fig 1-5 it is clear that by
changing the mass ratio and by considering the other parameters
as constant there is change in the nature of zero velocity curve.
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