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Abstract 
 
By introducing two large pseudo gravitational constants assumed to be associated with strong and electromagnetic interactions, we make 
an attempt to combine the old Abdus Salam’s ‘strong gravity’ concept with ‘Newtonian gravity’ and try to understand the constructional 
features of nuclei, atoms and neutron stars in a unified approach. From the known elementary atomic and nuclear physical constants, 
estimated magnitude of the Newtonian gravitational constant is (6.66 to 6.70) x10-11 m3/kg/sec2. Finally, by eliminating the proposed two 
pseudo gravitational constants, we inter-related the Newtonian gravitational constant, Fermi’s weak coupling constant and Strong coupl-
ing constant, in a generalized approach. 
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1. Introduction 

Even though ‘String theory’ models’ [1], [2] are having a strong 
mathematical back ground and sound physical basis, they are fail-
ing in implementing the Newtonian gravitational constant in atom-
ic and nuclear physics and thus seem to fail in developing a 
‘workable’ model of final unification.  It clearly indicates our lack 
of understanding and uncertain assumptions on which our current 
physics is being built up. The main issue is: to understand the 
basics of final unification from hidden, unknown and un-identified 
physics! Based on the old and ignored scientific assumption put 
forward by Nobel laureate Abdus Salam [3], we propose two large 
pseudo gravitational constants assumed to be associated with 
strong and electromagnetic interactions [4,5,6].With them, cur-
rently believed generalized physical constants like, proton-
electron mass ratio, neutron life time, weak coupling constant, 
strong coupling constant, nuclear charge radius, root mean square 
radius of proton, Planck’s constant, Bohr radius of hydrogen atom, 
molar mass constant, Avogadro number and Newtonian gravita-
tional constant etc and concepts like nuclear binding energy, nuc-
lear stability, nuclear charge radii and atomic radii can be re-
viewed in a unified approach. In addition, neutron star mass and 
radius can be understood with the ratio of nuclear to Newtonian 
gravitational constants.  

2. Two basic assumptions of final unification 

Assumption-1:  Magnitude of the gravitational constant associated 
with the electromagnetic interaction is,  
 

  37 3 -1 -2G 2.375 0.002 10  m kg sece     

 
Assumption-2: Magnitude of the gravitational constant associated 
with the strong interaction is 

  28 3 -1 -2G 3.328 0.002 10  m kg secs     
 
Note: We chose   G , Ge s  in such a way that,  
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3. Relation between m  and  mp e  

Based on the Planck mass, M c Gpl N    
1 6

GNm M mp pl eGe

 
  
 

                                                                (3) 

 
If nuclear Planck mass is defined as, 
 

2m c G 546.7 MeV/cnpl s  , 
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4. To fix the magnitudes of G ,Gs e  and GN   

It is possible to obtain the following relation. 
 

2 2m G m ep s ph
m c 4 ce 0
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(7) 

 
Based on this relation [3], 
 

2 2 34 h c m m280 eG 3.329560807 10s 2 3 2e m kg.secp


                               (8) 

 
2 2 3e m mp 37G 2.374335471 10e 3 4 216 m kg.sec0 e
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14 2 3 3m 4 2 h ce 0GN 2 2mp e mp
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                                         (10) 

5. To fit neutron life time and strong coupling 
constant 

Let, nt  be the life time of neutron.  Quantitatively it is possible to 
show that [7], 
 
 m mn p G G me s n

3m Gn N c tn

 
 
 
 

                                                        (11) 

 

where  G 23e 5.96 10 Avogadro number.
GN

  
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(12) 

 
With reference to the Weak coupling constant FG  and the pro-

posed sG , 
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If one is willing to define the strong coupling constant [7] as, 
 

2
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If, 0.1185 0.0006s   , t 881.422 secn   
 

 
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(15) 

 
Where,   0.1185 0.0006s   ,  t 880.3 1.1  secn   . 

6. To fit the nuclear charge radius  and  root 
mean square radius of proton 

Nuclear charge radius can be expressed with the following relation. 
 

15
0 2

2
1.24 10  ms pG m

R
c

                                                 
(16) 

 
Root mean square radius of proton [7] can be expressed with the 
following relation. 
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2

2
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p
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Based on relations (16) and (17), 
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N
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m
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7. Nuclear binding energy close to stable mass 
numbers.  

   It is noticed that, 

2
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5
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5

p
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          


          

                                  (19) 

Seem to represent the respective self-binding energies. Then for 
 Z 5 ,  nuclear binding energy [8], [9] close to stable mass 
numbers can be expressed with, 
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            (20) 

 
We are working on refining the ad-hoc expression 

 2 30Z Z    . See column-2 of table-1 prepared with 

19.75 MeV. With this binding energy constant stable mass number 
sA  can be estimated with, 

 2
sA X Y Y                                                                     (21) 
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 2

19.75 MeVwhere, 2  
30 8.8 MeV

and 2  

ZX Z

Y X Z Z

            
     

 

Considering 8.8 MeV as the maximum binding energy per nucle-
on,  X  can be referred to the lowest possible imaginary stable 

mass number and    2
sA X Y Y  

 
Corrections in estimated sA : 
 
If Z   is even and estimated sA is even, 

 Corrected  range Estimated 2s sA A                       (22)
 

 
If Z   is even and estimated sA is odd, 

  Corrected  range Estimated 1 2s sA A  
                    

(23) 

 
If Z   is odd and estimated sA is odd, 

 Corrected  range Estimated 2s sA A 
                      

(24) 
 
If Z   is odd and estimated sA is even, 

  Corrected  range Estimated 1 2s sA A  
                

(25) 

 
Table 1: To Estimate Medium, Heavy and Super Heavy Atomic Nuclides 
and Their Binding Energy

 
Proton  
number 

Estimated Binding  
energy close to  
As (MeV) 

Estimated  
stable mass num-
ber with even-odd 
correction 

 
Actual (stable 
and long living) 
isotopes 

21 391.8 45 2  45 
25 472.3 53 2  55 
31 592.8 69 2  69,71 
35 673.1 79 2  79,81 
41 793.3 93 2  93 
47 913.5 109 2  107,109 
51 993.5 119 2  121,123 
55 1073.5 131 2  133 
59 1153.4 141 2  141 

60 1173.4 144 2  
142,144, 146, 
143,145, 
148,150 

65 1273.3 159 2  159 
69 1353.2 169 2  169 
75 1473.0 187 2  187,185 
81 1592.7 205 2  205,203 
86 1692.4 220 2  222 
92 1812.1 238 2  238,235 
100 1971.6 262 2  257 
 
In this table, estimated stable mass numbers can be understood 
with the following relation. 
 

 2 22 2 0.0064   sA Z k Z Z Z                                      (26) 

3
2where,  1.605 10 ,s p e
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


 
Quantitatively this relation can be compared with the computa-
tionally proposed relation (8) of reference [8] which takes the 
following form.  
 

20.968051 0.00658803s ZN Z                                        (27) 
 

where sN is the neutron number of a nucleus with atomic number 
Z on the line of beta stability. Based on ‘mass number’, relation 
(27) can also be expressed in the following form.  
 

4 1 1  
4

kAZ
k
 

                                                                    (28) 

where  is any mass number.A This relation (28) can be com-
pared with existing stability relation, 
 

  2/32 2c a

AZ
a a A




                                                            (29) 

where  2 0.0157c aa a  . Keeping ‘workability’ point of view 
and ‘final unification’ point of view, proposed two assumptions, 
can be recommended for further research and analysis.  

8. To fit Fermi’s weak coupling constant and 
Newtonian gravitational constant 

To a great surprise, it is noticed that [7], 
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From above relations,  
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10 2 3

11
2 2

m6.66 10
4 kg.sec

e F
N

p

m G cG
m

   
           

                     (32) 

 35 -2where, 1.1663787 10 GeVFG c     

9. Mass and radius of neutron star 

Let  NS
,RNSM represent mass and radius of neutron star [10], 

[11] respectively. It is noticed that, 
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10. ‘System of units’ independent Avogadro 

number and Molar mass unit 

If, atoms as a whole believed to exhibit electromagnetic interac-
tion, then both molar mass constant and Avogadro number can be 
understood with: 
 

   2 2
e atom N moleG m G M

                                              
(37) 

 
where, atomm  is the unified atomic mass unit and moleM  is the 
molar mass unit or gram mole. If so, 
 

Avogadro numbermole e
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M G
m G

                                     (38) 
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GM m
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                                                              (39) 

11. To fit and understand the atomic radii 

Considering the geometric mean of the two assumed gravitational 
constants associated with proton and ‘atom as whole’, atomic radii 
can be fitted in the following way. By following the periodic ar-
rangement of atoms and their electronic arrangement, accuracy 
can be improved.  
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where   
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sA  is the stable mass number of the atom, nm is the average mass 

of nucleon and atomm  is the unified atomic mass unit. Note that, 
this relation resembles the famous relation for estimating nuclear 
radius [12], [13]. See the following table-2.    

 
Table.2: Estimated Atomic Radii 

Proton 
number 

Stable Mass 
number 

Estimated atomic 
radii  (pico meter) 

Reference data [14]   
(pico meter) 

1 1 33.0 31 
6 12 75.6 76 
16 32 104.8 105 
27 57 127.0 126 
28 62 130.6 124 
29 63 131.3 132 
30 66 133.4 122 
40 90 147.9 175 
47 107 156.7 145 
60 142 172.2 201 
70 172 183.5 187 
81 203 193.9 145 
89 227 201.3 215 
92 238 204.5 196 

12. Generalized relations 

Based on the above relations and by eliminating the proposed two 
pseudo gravitational constants, we pulled-out the following two 
interesting relations.  
 
Result-1: Proton-electron mass ratio, 
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where FG  is the Fermi’s weak coupling constant and 
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Result-2: Strong coupling constant, 
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where s  is the strong coupling constant.  
 
Based on these two results, 
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With reference to the recommended value of FG , 
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With reference to the recommended value of NG ,  
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Quantitatively, independent of the strong coupling constant, it is 
possible to show that, 
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From these relations, we would like to say that,  

1) Quantum gravity plays a vital role in weak interactions.  
2) By fixing the magnitude of NG , from relation (51), magni-

tude of FG  can be estimated and from relation (50), magni-
tude of  s  can also be estimated.  

3) By fixing the magnitude of FG , from relation (52), magni-
tude of NG  can be estimated and from relation (47), magni-
tude of  s  can also be estimated.  

4) With reference to the proposed relations, magnitude of  s  
seems to be around 0.1153. The same conclusion can also 
be extracted from Particle data group’s (PDG) review on 
Quantum chromodynamics [15]. See the following table-3. 

 
Table 3: Magnitude of s  Close To 0.1153 

1   0.0041
0.0048

2 0.1161s ZM 
  

2   0.0093
0.0087

2 0.1151 .s ZM 
  

3 
   

  0.0050
0.00

2

00        

0.1148  0.0014 .

 0.001    8  

s Z ex

PD

M p

F









 

4  2 0.1134 0.0011,s ZM    

5  2 0.1142 0.0023,s ZM    

6   0.0033
0.0032

2 0.1151s ZM 
  

7  2 0.1158 0.0035.s ZM    

8  2 0.1154 0.0020.s ZM  
 

9  2 +0.0028
-0.00220.1131s ZM 

 

10  2 +0.0021
-0.00220.1156s ZM 

 

11  2 +0.0041
-0.00340.1156s ZM 

 

12  2 +0.0093
-0.00870.1151s ZM 

 

13. Discussion and conclusion 

In an advanced and in a semi empirical approach, we proposed 
peculiar relations (1) to (52). Whether to ‘consider them’ or     
‘ignore them’, we are leaving the decision to the readers and 
science community.  But it is sure that in final unification point of 
view, at any ‘one’ stage of their serious research, one must develop 
such kind of relations by using which ‘gravity’ and ‘microscopic 
physics’ can be unified.   From relations (21) and (32), estimated 

magnitude of the Newtonian gravitational constant seems to 
be   -11 3 -1 26.66 to 6.70 10  m .kg .sec . 
Considering the wide applicable range of the proposed two as-
sumptions, we are confident to say that, with further research and 
analysis, ‘hidden and left over physics’ can easily be explored. In 
this context, we would also like to stress the fact that, with current 
understanding of String theory [1,2] qualitatively or quantitatively, 
one cannot implement the Newtonian gravitational constant in 
microscopic physics. This ‘drawback’ can be considered as a cha-
racteristic ‘inadequacy’ of modern unification paradigm. Proceed-
ing further, with reference to String theory models, proposed two 
pseudo gravitational constants and presented semi empirical rela-
tions can be given some consideration in developing a ‘workable 
model’ of ‘final unification’.  
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