International Journal of Advanced Astronomy, 4 (2) (2016) 82-89

International Journal of Advanced Astronomy

Website: www.sciencepubco.com/index.php/IJAA
doi: 10.14419/ijaa.v4i2.6536
Research paper

SPC

Linear stability and resonance of triangular equilibrium points
in elliptic restricted three body problem with radiating
primary and triaxial secondary

T. Usha *, A. Narayan

! Department of Applied Mathematics, Bhilai Institute of Technology, Durg, India
*Corresponding author E-mail: ushal56@gmail.com , ashutoshmaths.narayan@gmail.com

Abstract

The present paper studies the linear stability of the triangular equilibrium points of the system. The system comprises of a radiating pri-
mary and a triaxial secondary in elliptic restricted three body problem. The existence of third order resonances has been shown and the
linear stability has been analyzed for these resonance cases. For the resonance case, 34, = 1 and 21; + A, = 0, the conditions of the
linear stability are satisfied and the system is stable. But, for the resonance cases 24; + A, = 1and A; — 21, = 2 the system is un-

stable.
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1. Introduction

The elliptic restricted three body problem has been widely studied
by many researchers which is a generalization of classical model.
The system consists of two finite bodies (known as primaries)
moving about their common center of mass, having no influence
on each other. The third body is influenced by both of the prima-
ries. The primaries in general describe elliptic path. The orbit of
Jupiter around Sun is a fixed ellipse and the Trojan asteroids are
influenced by the gravitational attraction of the Sun and Jupiter is
an example of the above system. The study of restricted/elliptic
restricted three body problem has been a subject of investigation
over the years. The stability of such systems (ER3BP) moving in
an elliptic orbits was subject of investigation and was investigated
by many authors , Arnold [1] ; Danby [11]; Bennet [4]; Szebehely

[25]; Broucke [6]; Katsiaris [19] ; Beauge[5]; Baoyin[3]; Am-
mar[2]; Biggs [7]; Biggs [8] and many others.

The resonance/non-resonance cases of libration points for re-
stricted/elliptic restricted three body problem was studied and
analyzed by many authors Kamel [18]; Choudhry [10]; Ferraz
[12]; Henrard [15]; Kumar [20]; Henrard [17], Hadjidemetriou
[13]; Hadjidemetriou [14]; Subba Rao [24]; Thakur [26]; Beauge
[5]; Chandra [9]; Narayan [22] and many others.

In the present paper an attempt have been made to study and ana-
lyze the linear stability of the system. It has been shown that reso-
nances of the third order exist under the range of linear stability.
This paper is in continuation of the paper ( Usha [27] and Narayan
[23]). The study of linear stability in presence of resonance makes
the work different from the other works. We have followed the
method proposed by Kumar [20].

The present paper is organized as follows: Section 1, which is
introduction; Section 2 provides the equations of motion; Section
3 gives the location of the Triangular points; Section 4 focuses on
the First order stability and Normalization of Hamiltonian and

Section 5 gives the Resonance Cases. The discussions and conclu-
sions are drawn in Section 6.

2. Equations of motion

The equations of motion of the infinitesimal mass in the elliptic
restricted three body problem under radiating and triaxial prima-
ries in the barycentric, pulsating and rotating, non-dimensional
coordinates are given by the differential equations derived in Usha
et. al. [27] and given in the following equation (1). The notations
in principle follow the book of Szebehely [25], with some minor
modifications in the notation being done for adapting to the pre-
sent problem, presented as:
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Here m; and m,are the masses of the bigger and smaller prima-
ries positioned at (X ,0), i= 1, 2; g=1-3, the radiation pressure;
o, and o, are triaxiality parameters, o; (i=1,2)(McCuskey
[21]); and &, b, c are semi axes and R is the distance between the
primaries ; I, (i=1,2) are the distances of the infinitesimal mass

from the bigger and smaller primaries respectively; while e is the
eccentricity of the either primary around the other and v is the
true anomaly.

3. Location of triangular equilibrium points

The equilibrium points of the system are given by the equations:

X
4)
A _,
oy
where € is given by equation (2).
A-p)(x +)q
3
n
L M —31+ H)
oQ 1 2
Al _x_ T =0 5
o T |, 3ulx ~1+ w201 - ) ©
2r;
15u(x —1+ p) (o1 —03)y
2r)
and
(- ) LM
r13 r23
Ao —
& _y|a- e Se) L ®)
oy n 2ry
154(01 - o)y °
Suicail Wit LA
L 2r2 )

Solving the above equations, the coordinates of the triangular
libration points L, s are represented as:
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4. First order stability and normalization of
Hamiltonian
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The Lagrangian equation of motion of the problem is written as:
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Now, to get the Hamiltonian function of the problem, using the
formula:
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Hence, the perturbed Hamiltonian is given by:
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where P, and P, are the generalized components of momentum.
The nature of motion near the two points will be the same as the
two triangular equilibrium solutions are symmetrical to each other.
Hence, in further calculations the motion near the equilibrium
point L,will be considered.

So, shifting the origin to L, by the change of variables given by:

X =& +dyq;
y =n+Qo; a1
PX =P§+P1;

Py =P, +Py.
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So, the point L, is given by:
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P, =¢.

The solution of the equation (12) in the new variables are given by
the equilibrium position:

q1:q2:P1:P2 =0.

Now, expanding the Hamiltonian function (10) in the powers of
P and g;, i=1,2, we obtain:

H =
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k

0

| M8

(13)

where H, =constantand H; =0.

Taking only H, , as we are analyzing the linear stability, we have:
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The above equation can be written as:
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For normalizing using the canonical transformation:
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where, i=1, 2 and A, B, C are given by the equation (17). Here,
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If 0’12,2 are purely imaginary, we have:
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The equality relation corresponds to resonance cases with equal
frequencies, which are not considered in the study.
Now, the transformation (19) reduces the Hamiltonian as:
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Now, introducing the complex conjugate variables given by:
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Next, to reduce the Hamiltonian (30) to normal form in complex
conjugate variables given as:
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Now, expanding the Hamiltonian using Taylor’s theorem, and
equating the equal powers on both sides:
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Now, equating the equal powers of e on both sides of equation
(38), we have:
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By virtue of periodicity of s;;, and Sjyy, , we have

/11(1) =32(1) =0. So, equation (43) completely determines the
complex-valued generating function S correct upto O[e].

Finally, reducing the Hamiltonian I—~|2 = |_~|£0) + I—Nlél) to the nor-
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From, equations (46) and (48), we have:
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where, the function K =Xky0 A2 PRy is a real valued

function. The coefficients are given by using the relations (25) and
(43) as:
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Thus, the Hamiltonian H, has been transformed to normal form

given by equation (44), correct up to first order in eccentricity e.
This is obtained using equations (19), (25) and (46) and the corre-
sponding coefficients of the generating function K are given by
(50).

5. Resonance cases

For the study of stability, we have to examine the presence of
resonances. For this, taking third order terms and applying the

KAM theorem. So, considering the value of 4, and 4, up to
second order of e. As the value f 21(1) = /12(1) =0, so the quanti-
ties /11(2) and /12(2) are found by the periodicity conditions of the

functions Sl(gio and 5(()%1- Using (38) and equating the terms of

e? , We have:
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Now, using equation (43) along with the condition of periodicity
of sl%io and s(g%l, the values of /11(2) and 2,2(2) using equations
(14) and (21) are given as:

where y(o) is the value of p for e=0 and y(z) is the value of p

for e = 0 taken up to order of e?, given by the equation, follow-
ing Usha et. al[27] is :
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Taking, 4 =4 (,u(o) +e2,u(2)), i=1,2 and expanding by Tay-

lor’s theorem,

A4 = ﬂi(o) +e21i(2) +e2y(2) (Mj L i=1,2
du Jg

where, 4,®, 2, are given by equation by (52). Now, substitut-
ing the above obtained values in equation (53) and equating the
coefficient of e to zero, we have:

2 2
42 _ k1 ( )+kzﬂ£)

(55)

The value of ,u(z) is calculated on putting the value x =,u(0)
calculated from equation (54) and substituting different values of
ki, K5, N in the above equation, the values of third order reso-
nances are calculated.
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Let us consider, the third order resonance occur for:

3y =—1; 24+ 4, =0; 24+ Ay =1; 4 —24,=2.  (56)

Calculating the values of ,u(o) and ﬂ(z) at e=0 for different

resonance cases and plotting the graphs we can analyze the stabil-
ity of the system. The graphs have been plotted using MATLAB
and the calculations have been verified using the software Mathe-
matica.

6. Conclusion

The resonance cases and the linear stability of the elliptic restrict-
ed three body problem with radiating primary and triaxial second-
ary has been analyzed. It is observed from the graphs that the line-

ar stability is satisfied for the resonance cases 34, =—1 and
24+, =0 (Figuresl & 2). On the other hand, the condition of
linear stability does not hold for the resonance cases
A —24, =2 and 24, + A, =1which are clear from the graphs

(Figures 3 & 4). These results are in confirmation with Kumar
[20].
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