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Abstract 
 

The location of the collinear points in elliptical restricted three body problem, taking into account the effect of oblateness and radiation 

pressure of both primaries, has been obtained in this paper. Vinti's method has been exploited and the x-coordinates are obtained in the 

form of series solution. The linear stability has been investigated and it is found that the points are unstable in the Lyapunov's sense. The 

problem is also numerically explored taking into account two binary systems: Luyten-726 and Kruger-60. 
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1. Introduction 

 

Elliptic Restricted Three Body problem (ERTBP) is being vastly 

used as a model for the problem of finding the equilibrium points, 

since this model is found to be better equipped than Classical Re-

stricted three body problem (CRTBP) in studying the long-time 

behavior of important dynamical systems. Though the position of 

the primaries are assumed to be fixed in the ERTBP, the Hamilto-

nian of the system depends explicitly on time; for which a pulsat-

ing coordinate system has been introduced by using the variable 

distance between primaries as a unit of length ([1], [28], [29] etc). 

Poynting [21] explained that small meteors or cosmic dust are 

affected by not only gravitational force but also the radiation force 

as they come near a luminous body, however the CRTBP neglects 

the effect of radiation force acting on the infinitesimal mass, if one 

or both primaries are intense emitter of radiation. The relativistic 

form of this problem considering the radiation force was given by 

Robertson [22]. Several studies ([2], [3], [5], [11], [12], [25]) of 

the restricted problem have since been analyzing the effect of 

radiation pressure. 

 

The model of three body problem in its classical form was based 

on the assumption that the two primaries and infinitesimal mass 

are formed of homogeneous layers and is spherically symmetrical. 

It is however; found that although meteors and meteoroids have 

regular shapes [20], there are massive celestial bodies such as 

Saturn and Jupiter which are sufficiently oblate. The oblateness of 

a body can produce perturbation deviation from two-body motion. 

Various authors have studied the effect of this perturbation in 

ERTBP by taking one or both primaries as a source of radiation or 

oblate spheroid or both ([9], [26], [18] and [19]). A number of 

communications ([16], [14], [7], [8], [13], [23], [24], [4] etc) had 

taken into account the drag forces in CRTBP. 

 

 

 

Table 1: Data Related To The Binary Systems. 

Binary 
systems 

Mass 
ratio 

Radiation factor for first 
primary q1 

Radiation factor for second 
primary q2 

Luyten-

726 
0.499 0.999998 0.999999 

Kruger-60 0:394 0.99992 0.999996 

 

We have studied the position and stability of collinear points in 

ERTBP, when both primaries are oblate spheroid and are source 

of radiation. We explored the possibilities of existence and stabil-

ity of the collinear points around the two binary systems Luyten-

726 and Kruger-60. The binary system Luyten-726-8(AB) is the 

sixth closest system from earth discovered by Luyten [15]. Both 

the stars of this system are red dwarfs that are moving in highly 

eccentric orbits. The binary system Kruger-60 was first observed 

by Henry et.al. [6], this binary system also consists of red dwarfs. 

The relevant data of the two binary systems is given in Table 1. 

2. Equation of motion 

Consider two radiating oblate spheroid S1 and S2 with masses m1 

and m2 respectively moving in a plane about their common center 

of mass O in Keplerian elliptical orbit having eccentricity e. The 

infinitesimal mass is moving in the plane of motion of S1 and S2. 

Assume that A1 and A2 denote the oblateness coefficients of the 

bigger and smaller primaries respectively such that 

0 1 ; ( 1,2).A ii   Furthermore, the radiation factor of the 

primaries is denoted by 1 1 , 1, 2

Fpi
q ii i

Fgi

     , where, Fpi 

and Fgi are the radiation pressure forces and gravitational forces 

respectively. Then the equations of motion of a particle of infini-

tesimal mass in a non-dimensional rotating-pulsating barycentric 

coordinate system (x; y; z) is given as [17]: 
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where, 

 

 2 2 1 q A(1 )q q A qx y 1 1 11 2 2 2
2 3 32 r r1 2n 2r 2r1 2

     
       

  
  

         (2) 

 

 22 2 2r x y z1      ; 

 

 22 2 2r x 1 y z ;2     
                                                            (3)

 

 

and 

 

3A 3A2 1 2n 1 .
2 2

  

                                                                      
(4) 

 

In the differential equations dash denotes the differentiation with 

respect to true anomaly υ. Also e and n are the eccentricity and 

mean motion respectively. 

3. Location of the Lagrangian equilibrium 

points 𝐋𝟏, 𝐋𝟐 and 𝐋𝟑 

 

The position of the collinear equilibrium points are obtained by 

solving the equation 0
x





, taking x y y 0.    Consequently, 

we get the equation: 
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x x
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                                   (5) 

 

The collinear equilibrium points L1, L2 and L3 are defined as fol-

lows: 

1) L1 lies between the bigger and smaller primary:

1 ,x      

2) L2  is to the right of the smaller primary: 1 ,x    

3) L3 lies to the left of the bigger primary: x   . 

3.1. Location of collinear point 𝐋𝟏 

The position of the collinear point L1 is given by 1x      ; 

then x x   and  x 1 x 1     . Assuming 

x 1 ,    and substituting this relation in equation (5) and re-

arranging the terms of the equation, we obtain: 

 

3N1 ;
23(1 ) (1 ) D1




 
                                                                     

(6) 

where, 

 

 
4

N 1 2A 2A 1 2A 9A (2 7A )1 2 1 1 1 2 1 1
3

1 4 23A 17A ( 14A )1 2 1 1
3 3

35A 43A1 32 14A ( ) ;1 1
2 3 2

 
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1
45A2 3(1 (1 ))2

2 .
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3(1 )(1 2A ( 2A )2 1 1
3

 
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   
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We have ,    for small , hence a series expansion of   can be 

represented as follows: 

 

 21 c c ...1 2                                                                        (7) 

 

The value of   in series form is substituted from equation (7) into 

equation (6) and comparing the coefficients, we obtained the value 

of the coefficients as follows: 

 

175A 2 16521 2A 3A 95A A1 1 2 1 2 21 2 3 2
c .1

3 45A4 21 2A 2A 1 (1 )2 1 1 2
3 2

 
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  
   
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(8)
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3 2

 
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Thus, we obtain the coordinate for the collinear point L1 . The 

graphical behavior of the x-coordinate of the collinear point L1 as 

a function of the radiation factors 1  and 2 , taking A1 = 0.001, 

A2 = 0.001, around the binary system Luyten 726 and Kruger 60 

are shown in Figure 1.  

        

Also, the shift in the x-coordinate of the point as a function of the 

oblateness factor is shown in Figure 2 around both the binary sys-

tems, where the values of the radiation factors of the two primaries 

are taken according to Table 1. 
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a) Binary System Luyten 726-8 b) Binary System Kruger-60 

 
 

Fig.1:Variation in the X-Coordinate of the L1Point with Respect to Radiation Factors. 

 

a) Binary System Luyten 726-8 b) Binary System Kruger-60 

  
Figure 2:Variation in the X-Coordinate of the L1Point with Respect to Oblateness Factor. 

 

3.2. Location of collinear point L2 

The position of the collinear point L2 is given by 1x    ; then 

x x  and  x 1 x 1     . Assuming x 1 ,   

substituting this relation in equation (5) and re-arranging the terms 

of the equation, we obtain: 

 

3N2 ,
23(1 ) (1 ) D1



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where, 
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The value of ρ in series form is substituted from equation (7) into 

(10) and comparing the coefficients, we obtained the value of the 

coefficients as: 
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The graphical behavior of the system, concerning the shift in x-

coordinate of the collinear point L2 as a function of the radiation 

factors 1  and 2 ; taking A1 = 0.001 and A2 = 0.001, around the 

binary system Luyten-726 and Kruger 60 are shown in Figure 3. 

Also, the shifts in the x-coordinate of the point as a function of the 

oblateness factor around both the binary systems are shown in 

Figure 4, where the values of the radiation factors of the two pri-

maries are taken according to Table 1. 

 

3.3. Location of collinear point L3 

The position of the collinear point L3 is given by x  
; then 

x x  and  x 1 x 1     . Assuming x ,    sub-

stituting this relation in equation (5) and re-arranging the terms of 

the equation, we obtain: 
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a) Binary System Luyten 726-8 b) Binary System Kruger-60 

  
Fig.3:Variation in the X-Coordinate of the L2Point with Respect to Radiation Factor. 

 

a) Binary System Luyten 726-8 b) Binary System Kruger-60 

  
Fig.4:Variation in the X-Coordinate of the L2Point with Respect to Oblateness Factor. 
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Now replacing 1     and expanding 1


 up to 3o . 
  

 Thus 

from equation (11), we get  
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The graphical behavior of the system, concerning the shift in x-

coordinate of the collinear point L3 as a function of the radiation 

factors 1  and 2 taking A1 = 0:001 and A2 = 0:001, around the 

binary system Luyten-726 and Kruger 60 are shown in Figure 5. 

Also the shifts in the x-coordinate as a function of the oblateness 

factor around both the binary systems are shown in Figure 6, 
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where the values of the radiation factors of the two primaries are 

taken according to Table 1. 

 

4. Linear stability of collinear points 

The position of the equilibrium points is denoted by  a ,b0 0 . 

Assuming (u, v) as the displacement of the infinitesimal mass 

from the equilibrium point such that x a u0  and y b v0  and 

substituting these values in (1), we obtain the system of equations, 

taking only linear terms of u and v as follows 

 

   

   

01 0
u 2v u v ,xx xy

1 ecos

0 01
v 2u u v .yz yy

1 ecos

 
      

   

 
      

   

(13) 

 

Here, the superscript 0 indicates that the derivatives are to be 

evaluated at the equilibrium point  a ,b0 0 . 
The values of the sec-

ond order partial derivatives for the collinear points are given as 

follows: 

 

a) Binary System Luyten 726-8 b) Binary System Kruger-60 

  
Fig.5:Variation in the X-Coordinate of the L3Point with Respect to Radiation Factor. 

 

a) Binary System Luyten 726-8 b) Binary System Kruger-60 

  
Fig.6:Variation in the X-Coordinate of the L3Point with Respect to Oblateness Factor. 
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The solution to the above system of equation can be expressed as 

follows: 

 

   u Aexp ; v Bexp   
.
 

 

Substituting in equation (13), we get 
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where, 
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The characteristic equation of system (13), is given as follows: 
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14 2ie. 4 2 31 2
1 ecos

1
1 2 4 1 01 2 1 22

1 ecos

        

 
        

  

         
 

                    (15)                           

                                                                                                    



100 International Journal of Advanced Astronomy 

 
The two square roots of the biquadratic equation are given by (15) 

be 2
1

  and 2
2

 . Then using relation between roots and coefficient 

we have, 

 

 
  

12 2 1 2 4 1 ,1 2 1 21 2 2
1 ecos

          
 

                           (16) 

 

And 

 

 
 

12 2 4 1 2 3 .1 21 2 2
1 ecos

 
          
   

                              (17)

 

 

The system is stable around the collinear point if the roots of char-

acteristic equation are purely imaginary, that is the roots 2
1

 and 

2
2

  are negative, and thus we get the condition as represented by 

the following inequalities: 

 

 
 

1
4 1 2 3 0 3 2 4ecos 2 4e,1 2 1 22

1 ecos
              

 

                                                    

                                                                                                    (18) 

 

and 

 

  1 2 4 1 01 2 1 2      
.                                                     (19)

  

Taking both the factors of the inequality (19) negative yields con-

tradictory condition. Therefore taking both the factors positive, we 

get the condition for stability of collinear point as: 

 

1
1.1 2

2
     

                                                                          (20)

 

 

Taking   x 1 x (x 1),      the equation (5) can be re-

written as 

 

q 3A(1 )(x ) 11 1r1 2 2 4r1 n r 2r1 1

q 3A(x 1) 12 1r 02 2 2 4r2 n r 2r2 2

        
  
  

           
  
  

                                       (21) 

 

We have analyzed the stability condition of each of the collinear 

point separately in the subsequent discussions as given below:  

4.1. The stability of collinear point L1 

For the collinear point L1 which is expressed as

x 1 , r x1     and  r x 12    . Assuming r 11   and 

r 1 r ,2 1  the equation (21) become:  

 

q 3A q 3A1 11 1 2 1(1 ) r r 01 22 2 4 2 2 4n r 2r n r 2r1 1 2 2

      
             

      
        

 

Simplifying the above relation, we get the expression in the fol-

lowing form: 

 

 

9A 151A1 21 (1 ) 31 2
2 2

1/3

4.16017 2.08008A 66.9094A1 2
1

2/3

1.44225 4.56712A 157.365A1 2
1

19A 3793A10 1 2

1 9 6 27

1/3

4 102A1 2
1

2.3112 10.1693A 59.21


       



 
   

 

 
   

 

   
     

   


 

      
 

   

 

 

 

439A2

2/3

1.282 19.4437A 16.6482A1 2
1

160A28 1

1 27 9

1/3
9A13 138A2 2

2 1

1.38672 2.08008A 132.779A1 2

2/3

2.40375 14.6629A 719.362A1 2
1

41

1 3

 
    

 

   
     

    


 

      
 

  

 
    

 

 
   

 

7A 12374A1 2

6 27

 
  

 

                                                                                                       

                                                                                               (22) 

4.2. The stability of collinear point L2 

For the collinear point L2 which is expressed as x 1 , 

r x 11     and  r x 12    . Assuming r 11   and 

r r 12 1 
, 

the equation (21) becomes: 

 

q 3A q 3A1 11 1 2 1(1 ) r r 01 22 2 4 2 2 4n r 2r n r 2r1 1 2 2

      
              

      
        

 

Simplifying the above relation, we get the expression in the fol-

lowing form: 

 

 

 

 

9A 137A1 21 (1 ) 31 2
2 2

1/3

4.16017 27.0411A 191.714A1 2
1

2/3

1.44225 33.4121A 83.4902A1 2
1

19A 940A8 1 2

1 9 6 27

1/3

4 90A 10.6315 17.5652A 283.893A1 2 1 2
1


       



 
    

 

 
   

 

   
     

   


 

       
 

 
2/3

5.128 145.08A 222.765A1 2
1

688A 22690A44 1 2

1 27 9 81



 
   

 

    
     

    
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 

 

1/3
9A13 136A 4.16017 27.0411A 378.922A2 2 1 2

2 1

2/3

1.44225 33.4121A 162.814A1 2
1

19A 1885A1 1 2

1 9 6 27


 

       
 

 
    

 

    
      

    

                       

(23) 

4.3. The stability of collinear point L3 

For the collinear point L3 which is expressed as x , 

 r x1    
and 

 r x 12    . Assuming r 1 ,1   and 

r r 12 1 
, 

the equation (21) become 

 

q 3A q 3A1 11 1 2 1(1 ) r r 01 22 2 4 2 2 4n r 2r n r 2r1 1 2 2

      
              

      
        

 

Simplifying, we get  

A 5A1 21 (1 ) M 3 3A 3A A 3A 21 2 1 2 2 1 1 2
2 2

7A 7A 29A A 29A 133A7 72 1 2 1 2 1 2M 1 2
8 4 8 16 6 24 96 12

217A 217A 4001A 437A49 1193 1 2 1 2M 1
48 96 192 576 72 72

325A

     
                   

    

    
             

    

  
          

 

 
1031A 71 2 .2

144 1152 48

 
    

  

 

 

where, 

M
1




 
.

 

 

 

 

            Analyzing the value of 1 2   in the case of each of the 

collinear point, it is observed that the value of 1 2   is greater 

than 1, when the oblateness factors A1 and A2 are assumed to be 

zero. However, for very large value of the oblateness factor the 

stability condition might change. The stability factor 

(say)1 2     of collinear point L1 after varying the values of 

radiation factor 1  are shown in Figures 7 and 8 around the binary 

system Luyten-726 and Kruger-60 respectively. For the Figure 7 

and 8, 2 is assumed to be equal to 0, 0.2 and 0.4. 

               Similarly, in the Figures 9 and 10, the variation in the 

value of  are shown for the collinear point L2 with respect to 

1 , when 2  is assumed to be equal to 0, 0.2 and 0.4, around the 

binary system Luyten-726 and Kruger-60 respectively.In the Fig-

ures 11 and 12, the variation in the value of   are shown for col-

linear point L3 with respect to 1 , when 2  is assumed to be 

equal to 0, 0.2 and 0.4, around the binary system Luyten-726 and 

Kruger-60 respectively. 

             In the Figures 13, 15 and 17 the variation in the value of 

  for L1, L2 and L3 with respect to A1 are shown, when A2 is 

assumed to be equal to 0, 0.06, 0.12 and 0.18 around the binary 

system Luyten-726. And in Figures 14, 16 and 18, the variation in 

the value of  with respect to A1 are shown for L1, L2 and L3 

around the binary system Kruger-60. 

 

 

 

 
(a)β2 = 0.0 

 
(b)β2 = 0.2 

 
(c)β2 = 0.4 

Fig.7: Δ versus Β1 for Collinear Point L1around Luyten 726-8. 

 

 
(a)β2 = 0.0 

 
(b)β2 = 0.2 

 
(c)β2 = 0.4 

Fig.8: Δ versus Β1 for Collinear Point L1around Kruger-60. 

 

 
(a)β2 = 0.0 

 
(b)β2 = 0.2 

 
(c)β2 = 0.4 

Fig.9: Δ versus Β1 for Collinear Point L2around Luyten 726-8. 
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(a)β2 = 0.0 

 
(b)β2 = 0.2 

 
(c)β2 = 0.4 

Fig.10: Δ versus Β1 for Collinear Point L2around Kruger-60. 

 

 
(a)β2 = 0.0 

 
(b)β2 = 0.2 

 
(c)β2 = 0.4 

Fig.11: Δ versus Β1 for Collinear Point L3around Luyten 726-8. 

 
(a)β2 = 0.0 

 
(b)β2 = 0.2 

 
(c)β2 = 0.4 

Fig.12: Δ versus Β1 for Collinear Point L3around Kruger-60. 

 

 

 
A1=0.00 

 
A1=0.02 

 
A1=0.04 

 
A1=0.06 

Fig. 13: Δ versus A1for Collinear Point L1AroundLuyten 726-8. 

 

 
A1=0.00 

 
A1=0.02 

 
A1=0.04 

 
A1=0.06 

Fig. 14: Δ versus A1for Collinear Point L1around Kruger-60. 

 

 
A1=0.00 

 
A1=0.02 

 
A1=0.04 

 
A1=0.06 

Fig. 15: Δ versus A1for Collinear Point L2around Luyten 726-8. 
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A1=0.00 

 
A1=0.02 

 
A1=0.04 

 
A1=0.06 

Fig.13: Δ versus A1for Collinear Point L2around Kruger-60. 

 

 
A1=0.00 

 
A1=0.02 

 
A1=0.04 

 
A1=0.06 

Fig.14: Δ versus A1for Collinear Point L3 around Luyten 726-8. 

 
A1=0.00 

 
A1=0.02 

 
A1=0.04 

 
A1=0.06 

Fig.15: Δ versus A1for Collinear Point L3around Kruger-60. 

 

 

5. Discussion and Conclusion 

The elliptical restricted three body problem is studied when both 

the primaries are radiating and oblate. The location of the collinear 

points is obtained in the form of series, exploiting Vinti's method 

[30]. The linear stability of the collinear points has been studied 

and it is found that all the three points are unstable.  

Kumar & Ishwar [10] obtained the expression for the collinear 

point L1 in generalized photogravitational model and Singh & 

Umar [27] studied the solution for all three equilibrium points and 

investigated their stability. However, the novelty of this paper lies 

in the application of Vinti's method to obtain the value of the x-

coordinate of the collinear equilibrium points in the form of an 

infinite series and investigation of the stability by establishing a 

parameter defining the possible range of stability. 

The two binary systems Luyten-726 and Kruger-60 have been 

considered for the purpose of numerical exploration of the model. 

The effect of radiation pressure and oblateness on the x-coordinate 

around the binary systems has been plotted and shown in Figures 

1-6. The variation in the stability factor with radiation has been 

studied and it is found that value remained > 1 throughout our 

calculation for all three collinear points. But the study of the varia-

tion in the value of with respect to oblateness factor A1 and A2, 

indicated that the value is not always greater than 1 for the collin-

ear point L1, however the collinear point is still unstable as the 

values came out to be << -1/2. 
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