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Abstract 
 

In the present paper, we endeavor to study the stability of triangular points under the influence of small perturbations in the Coriolis and 

centrifugal forces, together with the triaxiality of the bigger primary in the framework of the relativistic R3BP. It is observed that the 

locations of these points are affected by the relativistic factor, triaxiality and a small perturbation in the centrifugal force, but are unaf-

fected by that of the Coriolis force. It is also seen that for these points the range of stability region increases or decreases according as 

equation (14) without 0 is greater or less than zero. 
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1. Introduction 

The restricted three-body problem (R3BP) in which two massive 

bodies (primaries) revolve around their common center of mass in 

circular orbits and a third body of negligible mass moves in their 

gravitational field, is a simple problem and has been receiving 

considerable attention of scientists and astronomers because of its 

applications in dynamics of the solar and stellar systems, lunar 

theory and artificial satellites. It possesses five points of equilibri-

um: three collinear and two triangular, where the gravitational and 

centrifugal forces just balance each other. The collinear libration 

points L ,1 L ,2 L3  are unstable, while the two equilateral libration 

points L ,4 L5
 
are stable for 0.038520...crit   Szebehely [1] 

The stability occurs in spite of the fact that the potential energy 

has a maximum rather than a minimum at the latter points. The 

stability is actually achieved through the influence of the Coriolis 

force, because the coordinate system is rotating (Wintner [2]; Con-

topolous [3]). 

By taking small perturbations in the Coriolis and centrifugal forc-

es, various authors (Szebehely [4]; Bhatnagar and Hallan [5]; Ab-

dulRaheem and Singh [6]; Singh and Begha [7]; Abouelmagd et 

al. [8]; Singh [9]) have described their effects on the motion of the 

third body. Szebehely [4] investigated the stability of triangular 

points by keeping the centrifugal force constant and found that the 

Coriolis force is a stabilizing force. This was confirmed by Ab-

dulRaheem and Singh [6]. 

The bodies in the R3BP are strictly spherical in shape, but in na-

ture, celestial bodies are not perfect spheres. They are either oblate 

or triaxial. The Earth, Jupiter, Saturn, Regulus, Neutron stars and 

black dwarfs are oblate. The Moon, Pluto and its moon Charon are 

triaxial. The lack of sphericity, triaxiality or oblateness of the ce-

lestial bodies causes large perturbations in a two -body orbit.  

Brumberg [10], [11] studied the relativistic n -body problem of 

three bodies in more details and collected most of the important 

results on relativistic celestial mechanics. He did not only obtain 

the equations of motion for the general problem of three bodies 

but also deduced the equations of motion for the restricted prob-

lem of three bodies. 

Bhatnagar and Hallan [12] studied the existence and linear stabil-

ity of the triangular points L4,5  in the relativistic R3BP, and found 

that L4,5 are always unstable in the whole range 
1

0
2

    in con-

trast to the classical R3BP where they are stable for 0  , where

  is the mass ratio and 0.03852...0   is the Routh’s value.  

Douskos and Perdios [13] investigated the stability of the triangu-

lar points in the relativistic R3BP and contrary to the results of 

Bhatnagar and Hallan [12], they obtained a region of linear stabil-

ity in the parameter space
17 69

0 0 2486c
      where 0.03852...0   

is Routh’s value. They also determined the positions of the collin-

ear points and showed that they are always unstable. In recent 

times, many perturbing forces i.e. oblateness, radiation of the pri-

maries, centrifugal and Coriolis forces have been included in the 

study of the relativistic R3BP. 

Katour et al. [14] studied the locations of the triangular points 

within the frame work of the post-Newtonian approximation when 

the mass of the primaries are assumed to change under the effect 

of continuous radiation process and oblateness effects of the two 

primaries. New perturbed locations of the triangular points are 

computed. 

Singh and Bello [15] examined the effect of centrifugal force in 

the relativistic R3BP and noticed that the positions and stability of 

the triangular points are affected by both the relativistic factor and 

a small perturbation in the centrifugal force. Singh and Bello [16] 

studied the stability of the relativistic R3BP with small perturba-

tions in the centrifugal and Coriolis without including coupling 

terms  i i 1,2
2c


 ,

 
,1 1   are the small perturbations in the centrifu-

http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJAA


International Journal of Advanced Astronomy 77 

 
gal and Coriolis forces respectively and c  is the speed of light. 

Our aim is to study the combined effect relativistic factors, triaxi-

ality of the bigger primary and small perturbations in the Coriolis 

and centrifugal forces on the positions and linear stability of the 

triangular points by considering coupling terms  i i 1,2
2c




 

too. 

This paper is organized as follows: In Sect. 2, the equations gov-

erning the motion are presented; Sect. 3 describes the positions of 

triangular points, while their linear stability is analyzed in Sect.4; 

the discussion is given in Sect. 5, finally sect. 6 summarizes the 

results of this paper. 

2. Equations of motion 

The pertinent equations of motion of an infinitesimal mass in the 

relativistic R3BP when the bigger primary is triaxial in a barycen-

tric synodic coordinate system  ,   and dimensionless variables 

can be written as Brumberg [11] and, Singh and Bello [16]: 

 

W d W
2 n

dt

W d W
2 n

dt

  
       

  

  
      

  

                                    (1) 

 

Where, 

 

 

 
 

 

    

   

1 3 2 2W 1 2 ( )1 2
2 2

23 1(1 ) 1
2 1 2 2 13 51 2 2 2

1 1

1 3 1 2 21 (1 ) ( )
2 2 3c

21 2 2 2 22 ( )
8

2 2 223 1 1 (1 )

2 21 2 2 2( )

 
         

 

   
       

   

  
          

 

           

            
    

       

2

2 2
1 2

27 1 1 1
(1 ) 4 ,

3 32 21 2
1 2

1 3 2 1 3

2 21 2 1 2

 
 

   
 




 


                                    
     

    
      

   (2) 

 

And n  the perturbed mean motion of the primaries is given by 

 

 
3 3 1

n 1 2 1 (1 )1 2 24 32c

 
        

 
                                         (3) 

 

2 2 2( )
1

2 2 2( 1)
2

     

      

                                                                     (4) 

where 
1

0
2

    is the ratio of the mass of the smaller primary to 

the total mass of the primaries,
1
 and

2
  are distances of the infin-

itesimal mass from the bigger and smaller primary, respectively;
 

n
 
is the mean motion of the primaries; c is the velocity of light. 

The small perturbations in the centrifugal and Coriolis forces and 

triaxiality of the bigger primary with the help of parameters are 

1 ; 1, 1 ; 11 1 2 2        , ( 1, 2)ii  with 1,i  re-

spectively, where 

2 2

,1 2
5

a h

R






2 2

.2 2
5

b h

R




  (McCuskey 

[17]) with a,b , h as lengths of its semi-axes and R is the dimen-

sional distance between the primaries. As Katour et al.[14], we do 

not include the triaxiality coefficients in the relativistic part since 

the magnitude of those terms is so small due to 2c , where c  is 

the speed of light. Consequently, ignoring second and higher pow-

ers of i ,  i 1,2i  and also their product, we take equations of 

motion as: 

3. Locations of triangular points 

The libration points are obtained from equation (1) after putting 

 

0.    

 

These points are the solutions of the equations 

 

W W
0

 
 

 
with 0.                                                           (5) 

 

The triangular points are the solutions of equations (5) with 0.   

Following as Singh and Bello [16], the coordinates of the triangu-

lar points  ,   denoted by L4  and L5 respectively are, 

 

1 2 5 1 1
1 122 8 24c

21 3 18 33 14
,2 122 8 24( 1)c

    
             

       
     
     

                                              
(6) 

 

 

 

1 21 5 6 6
212c

3 2 31 23
1

2 92 82

3 19 1
2

8 2

26 6 5

254c

13 23 10 32 51 30

272( 1)c

  
        

  
                       

  
            

   
 

        
    

 

4. Stability of L4   

Let (a,b) be the coordinates of the triangular point L4  

We set a , b ,( , 1)       in the equations (1). 

First, we compute the terms of their R.H.S, neglecting second and 

higher order terms, we obtain 
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W

A B C D

a , b

 
        

    
 

 

Where, 

 

 

   

3 1 2A 1 2 19 19
24 2c

2 23 15 19 8 3 31 8

1 2
16 16

2 35 31 168 264 126
,124 8( 1)c

  
       

  

       

  
 

        
   

     
 

 

 

 

3 3 2
B 1 2 1

24 3c

23 89 47 8

1
16

23 37 9 8

2
16

11 3(1 2 )

12
,12 3 43(34 279 635 528 134 )

2144( 1)c

 
      

 

   

 


   




  
 

 
 

        
 

    
 

 
3 5 3(1 2 ) 3(1 2 )

C 1 2 ,1 22 2 22c 18c 2c

         
         

        
 

2 2 2
6 5 5 4 15 15 6 5 5

.1 22 2 2
2 6 2

D

c c c

     
 

     
  

   
   
     

 

Similarly, we obtain 

 

1 1 1 1

,

W
A B C D

a b

   
    


   

    

 
 
 

 
 

Where, 

 

 

 

 

3 3 2
A 1 2 11 24 3c

23 89 47 8

1
16

23 37 9 8

2
16

11 3(1 2 )

12
,12 3 43(34 279 635 528 132 )

2144( 1)c

 
     
 
 

   

 


   




  
 

 
  

        
 

    

 

   

9 7 2B 1 2 3 31 24 6c

2 23 15 29 8 3 15 7 8

1 2
16 16

2 37 55 168 216 102
,124 8c

  
        

  

       

  
 

       
   
    

 

 
2 21 2 42C 4 ,1 1 22 2 22c 2c 2c

        
          
   
     

 

 3 1 2 5 3(1 2 ) 3(1 2 )
D .1 1 22 2 22c 18c 2c

             
        

         
 

d W
A B C D2 2 2 2

dt a , b

 
        

    
 

 

Where, 

 

 
3 5 3(1 2 ) 3(1 2 )

A 1 2 ,2 1 22 2 22c 18c 2c

         
         

        
 

 
2 21 2 42B 4 ,2 1 22 2 22c 2c 2c

        
          
   
     

 

 
2 21 1 102C 17 2 2 ,2 1 22 2 24c 2c 2c

      
           
   
     

 

 
3 3(1 2 ) 3(1 2 )

D 1 2 .2 1 22 2 24c 9c 2c

         
          

        
 

d W
A B C D3 3 3 3

dt a , b

 
        

    
 

 

Where, 

 

 
2 21 4 15 15 6 5 52A 6 5 5 ,3 1 22 2 22c 6c 2c

          
           
   
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 
3 5 3(1 2 ) 3(1 2 )

B 1 2 ,3 1 22 2 22c 18c 2c

         
           

        
 

 
3 3(1 2 ) 3(1 2 )

C 1 2 ,3 1 22 2 24c 9c 4c

         
          

        
 

 23 5 2 2 27 3 3 3(1 2 )
D .3 1 22 2 24c 6c 4c

             
      
       

 

The variational equations of motion corresponding to (1), on mak-

ing use of equation (4), can be expressed as 

 

P P P P P P 0,1 2 3 4 5 6      

                                             

(7) 

 

q q q q q q 0.1 2 3 4 5 6      
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Where, 

 

 

 

 

 

P 1 C ,P D ,P A C, P1 2 2 2 3 2 4

3
1 2 1 2 2

4
B 2 D ,2 3 1

1 (1 ) 1 22 32c

P A ,P B,q C ,q 1 D ,q5 1 6 1 3 2 3 3

3
1 2 1 2 2

4
2 C A ,q1 3 43 1

1 (1 ) 1 22 32c

B D ,q A ,3 1 5 1

    

  
       

     
             

      

 
     

   
  

       
  

    q B .6 1 
  

 

Then, the characteristic equation is  

 

4(P q P q ) (P q P q P q P q1 2 2 1 1 6 5 2 3 4 6 1

2P q P q ) P q P q 02 5 4 3 5 6 6 5

     

     
                                  (8) 

 

Substituting the values of P ,q ,i 1,2,...,6i i   in (13), the characteris-

tic equation (13) after normalizing becomes 

 

4 2b d 0                                                                                 (9) 

 

Where, 

 

 
9 3

b 1 3 2 31 22 2c

268 25 25
3 124c

2147 30 30
8 ,222c

 
          
 

     
   
  

      
   
    

 

 

   

2 39 65 77 24 12
27 (1 )

d
24 8c

2 29 10 99 89 9 10 47 37

1 2
16 16

2 333 (1 ) 3 (1867 2082 540 336
122 32c

2 3 4243 234 162 81
.224c

       
 

 

        

   

          
   
  

         
  
    

 

For
1

0
2c
 and in the absence of small perturbations (in the cen-

trifugal and Coriolis forces) and triaxiality 

(i.e. 0),1 2 1 2       (9) reduces to its well-known classical 

restricted problem form (see e.g. Szebehely [1]): 

 

274 2 (1 ) 0.
4

      
 

 

The discriminant of (9) is 

 

54 126 81 4
1 22 2 2c c c

108 405 162 3
1 22 2 2c 2c c

801 333 3073
27 661 2 1 124 4 4c

354 693 2
22 2c 2c

891 447
27 661 2 1

4 4 57 63
1 1 25501 273 585 2 2

1 22 2 28c c 2c

6

 
        

 

 
       
 


        



   



 
       
       
 
    
 
 

 
88 18 291

161 1 2 22 2 2c c c
      

                    (10) 

Its roots are 

 

b2

2

  
 

                                                                              (11) 

 

Where, 

 

 
9 3

b 1 3 2 31 22 2c

2 268 25 25 147 30 30
3 8 ,1 22 24c 2c

 
          
 

              
        
      

 

 

From (10), we have 

 

d 54 126 81 34 1 22 2 2d c c c

108 405 162 23 1 22 2 2c 2c c

801 333
2 27 661 2 1

4 4

3073 354 693
1 22 2 24c c 2c

891 447
27 1 2

4 4
0

5501 273 585
66 1 1 22 2 28c c 2c

  
         

 
       

 


      




     



 
      
  
 

     
 
 

                                           (12)

 

 

for
1

0,
2

 
 

 
 

From (12), it can be easily seen that  is monotone decreasing in

1
0, .

2

 
 
 
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But 

 

 
57 63

1 61 2 10 2 2

88 291 18
16 01 2 22 2 2c c c

       


       

                                                   (13) 

 

 
23 207 525 57

1 1 224 16 164c2

4115 3645
16 01 2 22 216c 16c

       


      

 
 

Since   0



 and   1

2




 are of opposite signs, and   is mono-

tone decreasing and continuous, there is one value of  , e.g. c in 

the interval 
1

0,

2

 
 
 

 for which  vanishes.  

Solving the equation 0  , using (10), we obtain the critical value 

of the mass parameter as 

 

 

1 1 17 69 1 5 59
69c 122 18 2 6 9 69486c

4 36 191 19 85 2 1
2

2 18 9 69 27 69

34155 175301 69 47 69
1 22 2804816c 81c

 
       

 

   
    

 

   
                                             (14) 

 

 

17 69 1 5 59
c 0 12 2 6 9 69486c

4 36 191 19 85 2 1
2

2 18 9 69 27 69

34155 175301 69 47 69
1 22 2804816c 81c

 
       

 

   
    

 

   
           
 

Where 0.03852...0   is the Routh’s value. 

We consider the following three regions of the values of   sepa-

rately. 

i) When 0 c 0,  the values of 2  given by (11) are 

negative and therefore all the four characteristic roots are 

distinct pure imaginary numbers. Hence, the triangular 

points are stable. 

ii) When
1

, 0c
2

      , the real parts of the characteristic 

roots are positive. Therefore, the triangular points are unsta-

ble. 

iii) When , 0c    , the values of 2  given by (11) are the 

same. Hence the solution contains secular terms.This induc-

es instability of the triangular points. 

Hence, the stability region is 

 

17 69 1 5 59
0 0 12 2 6 9 69486c

4 36 191 19 85 2 1
2

2 18 9 69 27 69

34155 175301 69 47 69
1 22 2804816c 81c

 
        

 

   
    

 

   
          

                                       

(15) 

5. Discussion 

We now discuss the triangular libration points in the perturbed 

relativistic R3BP under the assumption that the bigger primary is a 

triaxial rigid body. In analogy to corresponding problem without 

perturbations and triaxiality, the positions of analogous triangular 

libration points (6) are obtained. It is important to note that these 

triangular libration points (6) cease to be classical ones i.e. they no 

longer form equilateral triangles with the primaries as they do in 

the classical case. Rather they form scalene triangles with the 

primaries. It is seen from (6), that the positions of triangular points 

are affected by the relativistic effect, triaxiality and the perturba-

tion in the centrifugal force, but not affected by that of the Coriolis 

force.  

Equation (14) gives the critical value of the mass parameter c of 

the system which depends upon triaxiality, relativistic factor and 

small perturbations ,1 2  in the centrifugal and Coriolis forces, 

respectively. This critical value is used to determine the size of the 

region of stability of the triangular points and also helps in analyz-

ing the behavior of the parameters involved therein. It is obvious 

from (15) that the relativistic and triaxiality effects reduce the size 

of the stability region separately where as the Coriolis effect ex-

pands it if 02   and shrinks it if 0.2   similarly the separate 

effect of centrifugal force expands it if 01   and shrinks it if

0.1 
 

Even on considering the coupling terms  i i 1,2
2c


  which are 

very small quantities, from mathematical point of view, it can be 

seen that from (15) that the joint effect of the relativistic term and 

centrifugal force i.e. the term containing the coupling term 1
2c


 

expands the size of the stability region if 01   and shrinks it if

01  ; whereas the joint effect of the relativistic and Coriolis 

force i.e. the term containing the coupling term 2
2c


 shrinks it if

02   and expands it if 0.2    

From the overall analysis, it is clear that the Coriolis and centrifu-

gal forces maintained their stabilizing and destabilizing character-

istic behavior respectively.  

However, it can be seen that from equation (15) that the net effect 

is that the size of the range of stability increases or decreases ac-

cording as equation (14) without 0  is greater or less than zero. 

In the absence of triaxiality  i.e. 01 2    and a small perturba-

tion in the Coriolis force  i.e. 02  , the results of this study are 

in agreement with those of Singh and Bello [15] .When the bigger 

primary is spherical  i.e. 01 2    and the coupling terms 

 i i 1,2
2c


  are neglected, the results of the present study are in 

accordance with those of Singh and Bello [16]. 

In the absence of relativistic terms, our result coincides with those 

of Singh [9] when the primaries are non-luminous and the bigger 

triaxial only.  



International Journal of Advanced Astronomy 81 

 

6. Conclusion 

Under the assumption that the bigger primary is a triaxial rigid 

body and small perturbations ,1 2   are given to the centrifugal and 

Coriolis forces, the stability of the triangular equilibrium points in 

the relativistic R3BP has been examined. It is found that their 

positions are affected by the relativistic factor, a small change in 

the centrifugal force and triaxiality factors of the bigger primary. 

It is also observable from equation (19) that all the parameters 

involved in this study except the Coriolis force have destabilizing 

tendencies resulting in a decrease in the size of the region of sta-

bility. 

It is also noticed that the expressions for A,D,A ,C2 2 in Bhatnagar 

and Hallan [12] differ from the present unperturbed study. Conse-

quently, the expressions P ,P ,P ,P1 3 4 5 and the characteristic equa-

tion are also different. This led them (Bhatnagar and Hallan [12]) 

to infer that the triangular points are unstable, contrary to Douskos 

and Perdios and our results.  

A practical application of this model could be the study of the 

motion of a dust grain particle near Pluto and its moon Charon. 
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