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Abstract 
 

This paper investigates resonances in the perturbations of a synchronous satellite including its latitude, angular rate of the earth-moon 

system around the sun and the earth’s rotation rate about its axis. This is found that resonances occur due to the commensurability be-

tween (i) angular velocity of the satellite and angular rate of earth’s rotation about its axis and (ii) angular rate of the earth-moon system 

around the sun and angular rate of the rotation of the earth. Amplitude and time-period of the oscillation at the resonance points are de-

termined using the procedure of Brown and Shook [3]. Effect of  (orbital angle of the mass-centre of the earth-moon system around 

the sun) on amplitude and time period is also analyzed. It is found that for increasing the values of  from 0 to 45  amplitude decreas-

es and time period also decreases. Effect of time on the latitude of the satellite including earth oblateness is also studied. It is seen that for 

increasing the value of t , there is a small change in  ,  the latitude of the synchronous satellite. 

 
Keywords: Earth Oblateness; Perturbations; Resonance; Synchronous Satellite. 

 

1. Introduction 

Resonances in a geosynchronous satellite are of great importance 

for its applications in telecommunication, navigation, mass-media, 

meteorological and geodetic studies. In this paper, we have con-

sidered the effect of the gravitational attraction of the sun and the 

moon. The ellipticity of the earth’s equatorial section, the sun’s 

radiation pressure and residual drag effects are neglected. We have 

investigated resonances in the perturbations of a synchronous 

satellite including its latitude, angular rate of the earth-moon sys-

tem around the sun and rotation of the earth.  

 The phenomenon of resonance in the solar system is studied by 

many authors. Cook [4] studied the effects of the gravitational 

attractions of the Sun and Moon on the orbital elements of an 

Earth satellite using Lagrange’s planetary equations. He identified 

fifteen resonance families and labeled them as numbers. Allan [1] 

investigated the motion in longitude of a nominally geostationary 

satellite due to the tesseral harmonics. He further developed the 

corrective impulses required etc., for the principal J2,2  term. 

Giacaglia [8] studied the double resonance on the motion of a 

satellite. Hagihara [10] studied resonance in a geocentric satellite 

due to the oblateness of the earth. The problem of resonance in 

Celestial Mechanics is surveyed by Garfinkel [7]. He formulated 

and studied the solution for the ideal resonance problem. Within 

the framework of the planar-elliptic R3BP, Wisdom [14] studied 

the long-term dynamics associated with the 3/1 resonance to study 

the chaotic zones as well as the zones of quasi-periodic librations 

in the 3/1 resonance. Hadjidemetriou [9] studied the relation be-

tween resonance and instability in the solar system and in the 

planetary system. Henrard [11] reviewed the study of the reso-

nance cases 2/1 and 3/1 in the planar elliptic restricted three body 

problem. He showed how numerical experiments are significant in 

the celestial mechanics. Breiter [2] studied the eccentricity reso-

nance between the secular motion of an Earth satellite’s orbit and 

the longitudes of the Sun and the Moon within a Hamiltonian 

framework. Michtchenko et al. [12] studied a catalog of stable and 

unstable apsidal corotation resonance for the resonant planar plan-

etary three body problem. Gallardo [6] studied the characteristics 

of the resonant disturbing function for an asteroid perturbed by a 

planet in circular orbit. He applied a numerical method to the re-

gion of the main belt of asteroids showing the relevance of several 

mean motion resonances (MMR) with several planets. Narayan 

and Singh [13] studied the existence of resonance and linear sta-

bility of the triangular equilibrium points of the planar restricted 

three body problem considering the photo gravitational effect of 

both the primaries in circular and elliptic case. 

The paper organization is as follows: 

Equations of motion of synchronous satellite are described in Sect. 

2 while in Sect. 3 we have used the perturbation equations to ex-

press the equations of motion in the form of second order ordinary 

differential equations. From the solution of these equations, it is 

seen that the resonance occurs due to angular rate of rotation of 

the earth and angular rate of the earth-moon system around the 

sun. In Sect. 4 and 5, we investigated resonances due to earth’s 

rotation rate and the angular rate of the earth-moon system around 

the sun. We applied a method as given in Brown and Shook [3] to 

determine amplitude and time period of the oscillation at the reso-

nance point. Finally, Sect. 6 summarizes the conclusion of the 

paper. 

http://creativecommons.org/licenses/by/3.0/
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2. Equations of motion 

The equations of motion of satellite  , ,P r    moving around 

the earth E  are given by (Frick and Garber [5]) 
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Fig. 1: Coordinate Systems 
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Fig. 2: Earth’s Rotation Rate about Its Axis 
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3. Perturbation equations 

We use a perturbation method in which the terms involving 2  

and 
2

  appear as time variable driving functions. The in-plane 

motion described by Equations (1) and (2) and the out-of-plane 

motion described by Equation (3) are uncoupled and can be dealt 

separately. 

We define a set of perturbations relative to a synchronous orbit as 

follows: 
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Where rc  is the radius of the synchronous orbit and E  is the 

earth’s angular rate about its axis. 

By substituting the values of rc  and   from Equations (4) and (5) 

into Equations (1) and (3) and following the procedure of Frick 

and Garber [5], we get the following perturbation equations for the 

in-plane motion and the out-of-plane motion relative to the syn-

chronous equatorial orbit 
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Substituting these values in Equations (6) and (7), we get 
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Since we are interested in investigating the resonance in the mo-

tion of synchronous satellite due to , angular rate of the earth-

moon system about its centre of mass and  , angular rate of the 

earth-moon system around the sun, we are ignoring the secular 

terms, we, therefore, write 
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The solution of Equations (13) and (14) is given by 
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Where A , , andB C D are constants.  

We know that if any one of the denominator vanishes, the motion 

is indeterminate at that point. From the solution (15), it is ob-
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4. Resonance due to angular rate of rotation of 

the earth 
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, we will follow the procedure as given in Brown and Shook [3]. 
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The arbitrary constants being c  and   . 
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Since ,m K are functions of c  only, we can put (20) and (21) into 
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Since the last expression of (25) has the factor 2M   it may, in gen-
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If the oscillation be small, then Equation (28) can be put in the 

form 

 

 
2

2
1

1 3 0,0 12
2 1 30 1 0

cAd l M
m k n

dt K c m k n

 
   

  

   
  
     

 

Or 

 

 
2

1
1 3 0,0 12

2 00

2
11

0,02
2 0 0

2
11

0,
2

2 0 0

2
11

.
2

2 0 0

MAd l
c m k

dt K c

cMAd l
c

dt K c c

cMAd l

dt K c

cMAd l

dt K c

 
  



 
 




 




 
 
 

  
   

  

 
 

Its solution is given by 
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Where A and B are constants of integration.  

Using Equations (20) and (26), the equation for c  gives 
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Where d is constant of integration and 
is determined from Equation (30). l

 
Thus the perturbed solution is given by 

 
cos ,c l   

 

Where the values l  of and c  are given by Equations (30) and 

(31) respectively. 

We may choose the constants of integration 
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Thus we get 
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            (32) 

 

To draw   (latitude of satellite) versus time t  , we use the fol-

lowing numerical values: 
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We make the above quantities dimensionless by taking 
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Fig. 3: Latitude of Satellite   versus Time t  

 

From Fig.3, we conclude that for increasing the value of t , there is 

a small change in ,  the latitude of the synchronous satellite. 

The value of   first increases and then decreases as time t in-

creases. 

5. Resonance due to angular rate of the earth-

moon system around the Sun 

Following the same procedure of Brown and Shook [3], we have 

determined the amplitude A  and time period T  of the resonance 

oscillation at the point where
1
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We have drawn amplitude A  versus   (Fig.4) and time period 

T  versus   (Fig.5). 

We observed that for increasing the values of   from 0  to 45 ,  

amplitude A  decreases and time period T  also decreases. 
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Fig. 4: Amplitude A versus   

 

 
Fig. 5: Time Period T Versus   

 

6. Conclusion 

In this paper, we have studied resonances in the perturbations of a 

synchronous satellite resulting from the commensurability be-

tween (i)  , angular velocity of the satellite and E , angular rate 

of earth’s rotation about its axis and (ii)  , angular rate of the 

earth-moon system around the sun and E . We have taken into 

consideration the effects of the gravitational attraction of the sun 

and moon and the earth oblateness. The ellipticity of the earth’s 

equatorial section, the sun’s radiation pressure and residual drag 

effects are neglected. First, we have described the equations of 

motion of synchronous satellite by following the procedure of 

Frick and Garber [1962]. By using the perturbation equations (4) 

and (5), we have expressed the equations of motion in the form of 

second order ordinary differential equations (13) and (14). From 

the solutions (15) and (16), it is seen that the denominators van-

ishes at the points where 1 3 1k E    and 2 E   and the 

motion becomes indeterminate at these points. We applied a 

method given in Brown and Shook (1933) to study the motion at 

these resonance points. We have expressed  , the latitude of 

satellite in terms of time t  (Equation (32)). We have shown the 

effect of time t  on   (latitude of the satellite). It is observed 

that for increasing the value of t , there is a little change in ,  

the latitude of the synchronous satellite (Fig.3). Finally, we have 

determined amplitude and time period of the oscillation at the 

resonance point 2 E  . Using the data of a synchronous satel-

lite, we have shown the effect of  (orbital angle of the earth-

moon system around the sun) on amplitude and time period of the 

oscillation. We observed that for increasing the values of   from 

0  to 45 ,  amplitude A  decreases (Fig.4) and time period T  

also decreases (Fig.5). 
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