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Abstract 
 

The present paper deals with the effect of Stokes drag force on the existence and stability of collinear and non-collinear libration points 

in circular restricted three-body problem when less massive primary is an ellipsoid. During the investigation, it is found that there exist 

five libration points Li (i = 1, 2… 5) out of which three are collinear and two are non-collinear. We observed that the Stokes drag force 

does not affect the collinear libration points while non-collinear libration points are affected by it and all the libration points either collin-

ear or non-collinear are unstable in Lyapunov sense for the given range of dissipative constant k and mass parameter µ. 
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1. Introduction 

The restricted problem of three-body describes the motion of in-

finitesimal mass moving in the gravitational field of two massive 

primaries in the same plane or out of plane called two dimensional 

or three dimensional problem accordingly. The primaries are re-

volving around their center of mass either in circular or elliptical 

orbits under the influence of their mutual gravitational attraction. 

If the orbit of the primaries around their center of mass is elliptic, 

problem is said to be elliptic restricted three-body problem 

(ER3BP or ERTBP) and if the orbit of the primaries around their 

center of mass is circular, problem is said to be circular restricted 

three-body problem or restricted three-body problem, denoted by 

CR3BP or CRTBP or RTBP or R3BP.  

The problem possesses five equilibrium points out of which three 

are collinear and two non-collinear. The collinear libration points 

are unstable while non-collinear are stable for the mass ratio  μ ≤ 

0.038520896505, Szebehely  [2]. Some studies related to the equi-

librium points in R3BP or ER3BP, taken into account the oblate-

ness and triaxiality of the primaries, Coriolis and Centrifugal forc-

es, Yarkovsky effect, variation of the masses of the primaries and 

the infinitesimal mass etc.  are discussed by Danby [1]; Vidyakin 

[4]; Sharma [5]; Subbarao and Sharma [6]; Sharma and Subbarao 

[7]; Choudhary R. K. [8]; Cid R. et. al. [12]; El-Shaboury [16]; 

Bhatnagar et al. [19]; Selaru D. et.al. [21]; Markellos et al.  [22]; 

Subbarao and Sharma [23];  Khanna and Bhatnagar [24, 25]; Rob-

erts G.E.  [28]; Oberti and Vienne [29]; Perdiou et. al.  [30]; 

Sosnytskyi [31]; Ershkov [37]; Arredondo et.al.  [38]; Idrisi and 

Taqvi [39]; Idrisi [40]; Idrisi and Amjad [42]; Idrisi [49]; Idrisi 

and Shalini [50]. 

The dust particles in the Solar System interact with the electro-

magnetic radiation field of the Sun as well as the solar gravitation-

al field. According to Poynting (1903), when a dust particle is 

assumed to be spherical with a homogeneous structure, the solar 

radiation exerts a force on the particle in the direction of propaga-

tion of solar radiation, anti-parallel to solar gravity. Both radiation 

pressure and gravity acting on a homogeneous sphere approxi-

mately obey the inverse square law of distances from the center of 

the Sun. In Space science, the influence of the radiation is con-

nected with the motion and the formation of concentrations of 

interplanetary and interstellar dust or grains in planetary and bina-

ry star systems. In 1937, Robertson gave a relativistic expression 

of the total radiation force on a particle by considering only linear 

terms in the ratio of the velocity of the particle over that of light as: 

F = Fp R/R − Fp (v. R) R/R− Fp v/c 

where R is the position vector of the particle P with respect to a 

radiating source, v the corresponding velocity vector and c the 

velocity of light, Fp denotes the measure of the radiation pressure 

force. The first component in above equation expresses, the radia-

tion pressure, while the remaining two components are the Dop-

pler shift owing to the motion of the particle and the other compo-

nent due to the absorption and subsequent re-emission of part of 

the incident radiation. These two components constitute the so 

called Poynting-Robertson effect. The P-R effect is important in 

the study of stability of the zodiacal cloud, asteroidal particles, 

dust rings around planets and orbital evolution of cometary meteor 

streams.  The effect of P-R drag on the existence and stability of 

libration points is dicussed by many authors as Chernikov [3]; 

Murray [20]; Kushvah et.al.  [32]; Lhotka and Celletti [46]; Mish-

ra et. al. [47]; Pal et.al. [48]. 

The photo-gravitational restricted three-body problem arises from 

the classical problem if one or both primaries is an intense emitter 

of radiation, formulated by Radzievskii (1950). He has considered 

only the central forces of gravitation and radiation pressure on the 

particle of infinitesimal mass without considering the other two 

components of light pressure field and studied this problem for 

three specific bodies; the Sun, a planet and a dust particle. The 

radiation repulsive force Fp exerted on a particle can be represent-

ed in terms of gravitational attraction Fg (Radzievskii, 1950) as Fp 

= Fg (1 – q), where q = 1 – Fp/Fg, a constant for a given particle, is 

a reduction factor expressed in terms of the particle radius a, den-

sity δ and radiation-pressure efficiency factor x (in c.g.s. system) 

as: 

http://creativecommons.org/licenses/by/3.0/
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The assumption that ‘q’ is a constant implies that the fluctuations 

in the beam of solar radiation and the effect of planet’s shadow are 

neglected. Typical values for diameter of IDP (Interplanetary Dust 

Particles) are in the range of 50 – 500 µm and their densities range 

is 1 – 3 g/cm3 with an average density of 2 g/cm3. As the size of 

the particles increases, their density decreases (Grűn et.al.  [27]). 

Some of the notable research in PRTBP are carried by Chernikov 

[3]; Bhatnagar and Chawla [9]; Schuerman D.W.  [10]; Kunitsyn 

and Tureshbaev [11]; Simmons et. al.  [13]; Sharma [14]; Luky-

anov [15]; Xuetang et.al. [18]; Ammar [33]; Douskos [34]; Singh 

and Leke [35]; Katour et.al. [41]; Singh and Amuda [45]; etc. In 

2012, S. V. Ershkov studied the Yarkovsky effect in generalized 

photogravitational 3-body problem and proved the existence of 

maximally 256 different non-planar equilibrium points when sec-

ond primary is non-oblate spheroid. 

If a particle is moving in a gas, it experienced a force due to the 

collision of the particle with the molecules of the gas, called 

Stokes drag force. In planetary system, Stokes drag is used to 

describe the dissipative force acting on a particle moving around a 

star. The gas is assumed to be in circular motion around the bary-

center of the system, its angular velocity is slightly smaller by a 

factor α, than the Keplerian velocity at the same distance. The 

particle is assumed to be small or to move very slowly. In such a 

context, this effect can be described as dissipative force acting on 

the particle, modeled by a linear function of the relative velocity 

of the particle with respect to the gas. In synodic coordinates the 

components of the dissipative force are given by (Murray and 

Dermott  [26]): 

( , ) ( , )x y y xF F k x y y x          

where k Є  [0, 1) is the dissipative constant, depending on several 

physical parameters like the viscosity of gas, radius of the particle 

and mass of the particle; Ω = Ω(r) ≡ r−3/2 is the Keplerian angular 

velocity at a distance r = (x2 + y2)1/2 from the origin of the synodic 

frame and α Є  [0, 1) is the ratio between the gas and Keplerian 

velocities (Murray [20]).  

The equations of motion of the infinitesimal mass in synodic co-

ordinate system with Stokes drag effect are given by (Celletti et.al. 

[36]): 
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The restricted problem of three bodies with Stokes drag effect has 

been studied by Jain and Aggarwal [43] considering primaries as a 

point mass and found that the there exist only two non-collinear 

libration points which are unstable due to Stokes drag effect. 

Again, Jain and Aggarwal [44] have discussed the existence and 

stability of non-collinear libration points under Stokes drag effect 

when smaller primary is an oblate body. They have shown that 

there exist two non-collinear libration points which are linearly 

unstable and collinear libration points do not exist because of 

Stokes drag effect.  

In the present paper, we have studied the effect of Stokes drag on 

the existence and stability of libration points (collinear and non-

collinear) considering a planar-circular and two dimensional re-

stricted three body problem when less massive primary is an ellip-

soid and mathematically we have proved that there exist three 

collinear libration points which are not affected by Stokes drag 

force, only non-collinear libration points are affected by Stokes 

drag force. The whole paper is divided into six sections. In section 

2, Equations of motion of the infinitesimal mass under Stokes drag 

effect are obtained. In section 3, existence of collinear and non-

collinear libration points have been shown. In section 4, the stabil-

ity of non-collinear libration points have been discussed. In sec-

tion 5, an example to Sun-Earth system has been considered. In 

last section, conclusions are drawn. 

2. Equations of motion 

Let m1, m2 and m3 be the masses of more massive primary, less 

massive primary and infinitesimal mass respectively and a′, b′, c′ 

be the axes of the less massive primary m2 such that a′ > b′ > c′ 

with one of the axes as the axis of symmetry and its equatorial 

plane coinciding with the plane of motion. The primaries are re-

volving with angular velocity n in circular orbits about their com-

mon centre of mass O and m3 is moving under the gravitational 

field of m1 and m2 in the same plane. The line joining m1 and m2 is 

taken as X- axis and ‘O’ their center of mass as origin and the line 

passing through O and perpendicular to OX and lying in the plane 

of motion of m1 and m2 is the Y-axis. We consider a synodic system 

of coordinates O (xyz); initially coincident with the inertial system 

O (XYZ), rotating with the angular velocity n about Z-axis (the z-

axis is coincident with Z-axis) (Fig.1). The distances of m3 from mi 

(i = 1, 2) and O are ri (i = 1, 2) and r respectively. Our aim is to 

find the equations of motion of m3 using the terminology of Szebe-

hely (1967) in the synodic co-ordinate system and dimensionless 

variables i.e. the distance between the primaries m1 and m2 is unity, 

the unit of time t is such that the gravitational constant G = 1 and 

the sum of the masses of the primaries is unity i.e. m1 + m2 = 1. 

 

 
Fig. 1: Configuration of the Restricted Three Body Problem with 

Stokes Drag F. 

 

Using the terminology of circular restricted three-body problem, 

the equations of motion of the infinitesimal mass m3 in the synodic 

coordinate system and dimensionless variables are given by 
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S = S(r) = r−3/2 is the Keplerian angular velocity at distance r = x i +  

y j from the origin of the synodic frame of reference and ω = nk is 

the angular velocity of the axes O(x, y). Therefore, the components 

of Stokes drag along x and y axes are given by (Celletti et.al. [36]):  

 
( )x yF k x y S   

   
( )y xF k y x S   

 
where k is dissipative constant such that 0 < k < 1 depends upon the 

various physical parameters as viscosity of the gas, radius of the 

particle, mass of the particle etc. and 0 < α < 1 is the ratio between 

the gas and Keplerian velocities. 

If we put k = 0 in Eqns. (1) and (2), the results are in conformity 

with those of Khanna and Bhatnagar [24].  

Thus, the equations of motion (1) can be written as 
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The integral analogous to Jacobi integral is 
2 2( )v F C    

where v is the velocity of infinitesimal mass m3 and F is the 

Stokes drag whose components are given by (Murray and Dermott 

[26]). 

3. Libration points 

At the libration points, 0, 0, 0, 0,x y x y    therefore 

from the Eqns. (5), we have 
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3.1. Collinear libration points 

The collinear libration points are the solution of the Eqns. (6) and 

(7) for y = 0 i.e 
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From Eqn. (9), k  ≠ 0 and  
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  , therefore x = 0.  

It means the barycenter of the system itself a collinear libration-

point in case of Stoke’s drag effect. Now, on substituting x = 0 and 

y = 0 in Eqn. (8) we have a fifth degree equation in µ i.e.  
5 4 3 2

1 24 14 (22 6 3 ) 20 10 2 0                                                                       

(10) 

Eqn. (10) has three real roots (µi, i = 1, 2, 3) and all these three 

roots µi, ≥ ½ as shown in Fig. 2 but our assumption is µ < ½. Thus, 

barycenter can’t be a collinear libration point in case of Stokes 

Drag. This is clear from the Eqn. (8), the collinear libration points 

are affected by only oblateness factors σ1 and σ2 not by the dissipa-

tive constant k and the parameter α (ratio between the gas and Kep-

lerian velocities). Since, this equation is solved by Khanna and 

Bhatnagar [24] in detailed and they have proved that there are only 

three real solutions of the Eqn. (8) i.e. there exist only three collin-

ear libration points Li (i = 1, 2, 3) and the motion around these 

libration points is unbounded and consequently these libration 

points are linearly unstable for all values of µ, σ1 and σ2. So, in next 

section we will skip the stability of the collinear libration points. 

Thus, we conclude that, Stoke’s drag does not affect collinear libra-

tion points, these points are affected by only oblateness factors σ1 

and σ2 which are studied by Khanna and Bhatnagar [24]. 

 

 
Fig. 2: σ2 versus µi, i = 1, 2, 3; σ1= 10-4 

3.2. Non-collinear libration points 

The non-collinear libration points are the solution of the Eqns. (6) 

and (7) for y ≠ 0 i.e. 
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On substituting σ1 = 0, σ2 = 0 and k = 0, the solution of Eqns. (11) 

and (12) is r1 = 1, r2 = 1 and from Eqn. (2), n = 1. 

Now we assume that the solution of Eqns. (11) and (12) for σ1 ≠ 0, 

σ2 ≠ 0 and k ≠ 0 as 

r1= 1+ ξ1,   r2 = 1 + ξ2, ξ1, ξ2 <<1. 

Substituting these values of r1 and r2 in the Eqns. (4) and (5), we 

get 
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Now, substituting the values of x, y from Eqns. (13), r1 = 1 + ξ1, r2 

= 1 + ξ2 in the Eqns. (11) and (12) and neglecting higher order 

terms, we obtain 
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Fig. 3: L4 (x, y) versus k, µ = 0.01; σ1= 10-3; σ2= 10-4 

 

As shown in the Fig. 3, the non-collinear libration points are af-

fected by triaxiality as well as Stokes drag and these points move 

away from the center of mass as k increases, also these points form 

scalene triangle with the primaries as r1 ≠ r2. If we put k = 0 in 

Eqns. (14) and (15), the results are agreed with Khanna and 

Bhatnagar [24] and for σ1 = 0, σ2 = 0 and k = 0, the results are in 

conformity with Szebehely [2]. 
 

4. Stability of libration points 

The equations of the motion of the infinitesimal mass are 
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To study the possible motion of the infinitesimal mass around the 

libration points let the coordinates of these points are (x0, y0). If we 

give small displacement (ζ, η) to (x0, y0) and considering only 

linear terms in ζ and η , the variation ζ and η  can be written as:              

ζ = x – x0 and η = y – y0 and the equations of the motion become 
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   (16) 

where ( ), ( )x y y xF k y S F k x S        and 

‘o’ indicates that the partial derivatives are to be calculated at the 

libration points under consideration. 

The characteristic equation of the Equations (16) is given by 
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The Eqn. (17) is a quartic equation in λ and its discriminant is 

given by (https://en.wikipedia.org/wiki/Quartic_function) 
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The nature of roots depends upon Δ, given as:  

 If Δ < 0, two roots are real and two complex conjugate 

roots 

 If Δ > 0, all roots are real or complex 

o P < 0 and D < 0, all roots are real and distinct 

o P > 0 or D > 0, there are two pairs of complex 

conjugate roots 

 If Δ = 0 and 

o P < 0, D < 0 and Δo ≠ 0, there is a real double 

root and two simple real roots 

o P > 0 or D > 0, there is a real double root and 

two complex conjugate roots 

o Δo = 0, there is a triple real root and a simple 

real root 

 If D = 0 and 

o P < 0, there are two real double roots 

o P > 0 and Q = 0, there are two complex conju-

gate double roots 

o Δo = 0, all four roots are equal to –a/4 

where 

2

3

2

2 2 4

8 3 ,

8 4 ,

3 12 ,

64 16 16 16 3 .

o

P b a

Q a c ab

b ac d

D d b a b ac a

 

  

   

    

 

The libration point (xo, yo) is said to be stable if all four roots λi (i 

= 1, 2, 3, 4) have negative real values or pure imaginary.  

 

4.1 Stability of Non-Collinear Libration Point L4 
At the non-collinear libration points L4 
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As shown in the Fig. 4, in the non-shaded region Δ > 0, P > 0 

while in light-shaded region Δ < 0, P > 0 and in dark-shaded re-

gion Δ < 0, P < 0  in the interval 0 < µ < ½ , 0 < k < 1.  Thus, the 

characteristic Eqn. (17) has complex conjugate roots in non-

shaded region, in light-shaded region two roots are real while two 

roots are complex, in dark-shaded region all roots are real and 

distinct. Hence, the non-collinear libration point L4 is unstable in 0 

< µ < ½ , 0 < k < 1.   Similarly, we can show that L5 is also unsta-

ble. 

 
Fig. 4: Δ-P region with respect to µ and k; α = 0.05, σ1 = 10-3, σ2 = 10-4

 

5. Application to sun-earth system 

Let us consider an example of the Sun-Earth system in planar 

restricted three-body problem considering the smaller primary m2 

i.e. ellipsoid as Earth and the bigger one m1 as Sun. From the as-

trophysical data (Lang [17]) we have, mass of the Sun (m1) = 

1.9891 × 1030 kg; mass of the Earth (m2) = 5.9742 × 1024 kg; axes 

of the Earth:  a = 6378.140 km, b = 6368 km and c = 6356.755 km; 

Mean distance of Earth from the Sun = 1.49598 × 108 km. In di-

mensionless system: µ = 0.00000300346; a1 =0.0000426352; b1 = 

0.0000425675; c1 = 0.0000424923. Therefore, from the Eqn. (2), 

the mean-motion of the primaries is n = 1.0000000000026898. 

The location of non-collinear libration point L4 from the Eqns. (14) 

and (15) is plotted in Fig. 5. The abscissa and ordinate both are 

decreasing functions with respect to k for the non-collinear libra-

tion point L4 in Sun-Earth System. 
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Fig. 5: L4 in Sun-Earth System 

 

Now, to discuss the stability of the collinear libration point L4 we 

have plotted the Δ and P curves for different values of k. As 

shown in Fig. 6, Δ > 0 and P > 0 which implies that the character-

istic Eqn. (17) has complex conjugate roots in the interval 0 < k < 

1. Thus, the non-collinear libration point L4 in Sun-Earth System 

is unstable. Similarly, L5 is also unstable in 0 < k < 1. 

 
Fig. 6: k versus Δ and P; α = 0.05 

 

6. Conclusion 

In the present paper, we have considered a planar circular restricted 

three body problem when less massive primary is an ellipsoid and 

studied the effect of Stokes drag on the infinitesimal mass m3. This 

is found that, there exist five libration points Li (i = 1, 2, 3, 4, 5) out 

of which three are collinear and affected by only oblateness factors 

of ellipsoid i.e. σ1 and σ2. The non-collinear libration points L4 and 

L5 are affected by oblateness as well as Stokes drag. The abscissa 

and ordinate of non-collinear libration points L4,5 are decreasing 

functions with respect to k. Further, all the libration points either 

collinear or non-collinear all are unstable in Lyapunov sense. Final-

ly we considered an application to Sun-Earth system and found that 

the non-collinear libration points exists and unstable for 0 < k < 1. 

In our case, when σ1 = 0, σ2 = 0 and k = 0 the results are in agree-

ment with the classical case of restricted three-body problem (Sze-

behely [2]) and if σ1 ≠ 0, σ2 ≠ 0, σ1 ≠ σ2 and k = 0 the results are in 

conformity with Khanna and Bhatnagar [24]. 
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