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Abstract 
 

In the present paper, the existence of non-collinear libration points has been shown in circular restricted three-body problem when less 

massive primary is a heterogeneous oblate body with N-layers. Further, the stability of non-collinear libration points is investigated in 

linear sense and found that the non-collinear libration points are stable for the critical value of mass parameter µ ≤ µcrit= µo – 3.32792 k1 

– 1.16808 k2. 
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1. Introduction 

The restricted problem of three-body describes the motion of in-

finitesimal mass moving in the gravitational field of two massive 

primaries in the same plane or out of plane called two dimensional 

or three dimensional problem accordingly. The primaries are re-

volving around their center of mass either in circular or elliptical 

orbits under the influence of their mutual gravitational attraction. 

If the orbit of the primaries around their center of mass is elliptic, 

problem is said to be elliptic restricted three-body problem 

(ER3BP or ERTBP) and if the orbit of the primaries around their 

center of mass is circular, problem is said to be circular restricted 

three-body problem or restricted three-body problem, denoted by 

CR3BP or CRTBP or RTBP or R3BP.  

The problem possesses five equilibrium points out of which three 

are collinear and two non-collinear. The collinear libration points 

are unstable while non-collinear are stable for the mass ratio μ ≤ 

0.038520896505 [2].Some studies related to the equilibrium 

points in R3BP or ER3BP, taken into account the oblateness and 

triaxiality of the primaries, Coriolis and Centrifugal forces, varia-

tion of the masses of the primaries and the infinitesimal mass etc. 

are discussed by Danby [1]; Szebehely [2]; Vidyakin [3]; Sharma 

[4]; Subbarao and Sharma [5]; Sharma et.al. [6]; Choudhary R. K. 

[7]; Bhatnagar and Hallan [8]; Cid R. et. al. [9]; El-Shaboury [10]; 

Bhatnagar et al. [11]; Selaru D. et.al. [12]; Markellos et al. [13]; 

Subbarao and Sharma [14]; Khanna and Bhatnagar [15], [16]; 

Roberts G.E. [18]; Oberti and Vienne [19]; Sosnytskyi [20]; Per-

diouet. al. [21]; Arredondo et.al. [22]; Idrisi and Taqvi [23]; Idrisi 

[24]; Idrisi and Amjad [25], Idrisi [26]. 

We got the idea of our problem from the paper ‘Rotating Stratified 

Heterogeneous Oblate Spheriodin Newtonian Physics’ by Esteban 

and Vazquez. [17]. in their paper they have taken three layers in a 

stratified non-conformal heterogeneous oblate spheroidal system. 

We wish to extend this study to the restricted three body problem. 

2. Equations of motion 

Let m1, m2 and m3 be the masses of more massive primary, less 

massive primary and infinitesimal mass respectively. We consider 

the less massive primary m2 as an heterogeneous oblate body with 

N-layers having different densities ρi and axes ai, bi and ci such 

that ρi+1>ρi, ai+1>ai, bi+1> bi, ci+1 = ci, ai = bi> ci, i = 1, 2, …., N. 

The primaries are revolving with angular velocity n in circular 

orbits about their common centre of mass O and m3 is moving 

under the gravitational field of m1 and m2 in the same plane. The 

line joining m1 and m2 is taken as X- axis and ‘O’ their center of 

mass as origin and the line passing through O and perpendicular to 

OX and lying in the plane of motion of m1 and m2 is the Y-axis. 

We consider a synodic system of coordinates O(xyz); initially 

coincident with the inertial system O(XYZ), rotating with the an-

gular velocity n about Z-axis (the z-axis is coincident with Z-axis). 

The distances of m3 from mj and O are rj and r respectively, j = 1, 

2. Our aim is to find the equations of motion of m3 using the ter-

minology of Szebehely (1967) in the synodic co-ordinate system 

and dimensionless variables i.e. the distance between the primaries 

m1 and m2 is unity, the unit of time t is such that the gravitational 

constant G = 1 and the sum of the masses of the primaries is unity 

i.e. m1 + m2 = 1. 

The equations of motion of the infinitesimal mass m3 in the synod-

ic coordinate system and dimensionless variables are given by 
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3. Non-collinear libration points 

At the libration points all the derivatives of nth order are zero, 

therefore the equations of motion (1) becomes 
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The collinear libration points are the solution of the Equations (5) 

and (6) for y ≠ 0 i.e. 
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On substituting k1 = 0 and k2 = 0, the solution of Eqns. (7) and (8) 

is r1 = 1, r2 = 1 and from Eqn. (2), n = 1. 

Now we assume that the solution of Eqns. (7) and (8) for k1 ≠ 0, k2 

≠ 0 as 

 

r1 = 1 + ξ1, r2 = 1 + ξ2, ξ1, ξ2<<1. 

 

Substituting these values of r1 and r2 in the Eqns. (3) and (4), we 

get 
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Now, substituting the values of x, y from Eqns. (9) and r1 = 1 + ξ1, 

r2 = 1 + ξ2 in the Eqns. (7) and (8) and neglecting higher order 

terms, we obtain 
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Thus the coordinates of the non-collinear libration points L4,5 are 

 

1

2

1

2 1 1 2

1 ,
1 1 2

x k

k

 


 

 

 

 
     

  

 
  

                                                       

(10) 

 

1

2

2
1 1 23 2

1
2 3

1
1 1 2

k

y

k

 

 

 

 

   
     

    
     

                                                

(11) 

4. Stability of non-collinear libration points 

The equations of the motion of the infinitesimal mass are 
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To study the possible motion of the infinitesimal mass around the 

libration points let the coordinates of these points are (x0, y0). If we 

give small displacement (ζ, η) to (x0, y0) and considering only 

linear terms in ζ and η, the variation ζ and η can be written as: ζ = 

x – x0 and η = y – y0 and the equations of the motion become 
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where ‘o’ indicates that the partial derivatives are to be calculated 

at the libration points under consideration. 

The characteristic equation of the Equations (12) is given by 
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Let λ2 = Λ, therefore the characteristic Equation (13) becomes 
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which is a quadratic equation in Λ. If Λ1 and Λ2 are the roots of 

the Equation (14) then the roots of the characteristic Equation (13) 

are given by 
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λi (i =1,…4) will be pure imaginary if Λ1 and Λ2 both are negative 

real roots and then the non-collinear libration points will be stable.  

Now, roots of Eqn. (14) are given by 
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Eqn. (16) has negative real roots if  
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For ki = 0 (i = 1, 2), the solution of above equation is µ = µo = 

0.0385208… (Szebehely, 1967). Now we consider µcrit = µo + α, α 

<<1 be the solution of Eqn. (17), therefore 
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Thus the non-collinear libration points are stable for the critical 

value of mass parameter µ ≤ µcrit= µo – 3.32792 k1 – 1.16808 k2. 

5. Conclusion 

In the present paper the existence and stability of non-collinear 

libration points in restricted three-body problem considering less 

massive primary an oblate heterogeneous spheroid with N-layers 

has been discussed and this is found that there exist two non-

collinear libration points which are stable for a critical value of 

mass parameter µ ≤ µcrit= µo – 3.32792 k1 – 1.16808 k2. 
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