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Abstract 
 

We study the effects of oblateness and small perturbations in the Coriolis and centrifugal forces on the locations and stability of the tri-

angular points in the relativistic R3BP. It is observed that the positions are affected by the oblateness, relativistic, and a small perturba-

tion in the centrifugal force, but are unaffected by that of Coriolis force. It is also seen that the relativistic terms, oblateness, small pertur-

bations in the centrifugal and Coriolis forces influence the critical mass ratio. It is also noticed that all the former three and the latter one 

possess destabilizing and stabilizing behavior respectively. However, the range of stability increases or decreases according to as p >0 or 

p<0 where p depends upon the relativistic, oblateness and small perturbations in the Coriolis and centrifugal forces. 
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1. Introduction 

The restricted three-body problem (R3BP) in which two massive 

bodies (primaries) revolve around their common centre of mass in 

circular orbits and third body of negligible mass moves in their 

gravitational field, is a simple problem and has been receiving 

considerable attention of scientists and astronomers because of its 

applications in the dynamics of the solar and stellar systems, lunar 

theory and artificial satellites. It possesses five equilibrium points: 

three collinear 1,L 2,L 3L and two triangular 4,L 5L , where the 

gravitational and centrifugal forces just balance each other. The 

collinear points are unstable; while the triangular points are stable 

for mass ratio 0.038520...   Szebehely [1].Their Their stability 

occurs in spite of the fact that the potential energy has a maximum 

rather than a minimum at the latter points. The stability is actually 

achieved through the influence of the Coriolis force, because the 

coordinate system is rotating (Wintner [2]; Contopolous [3]). Var-

ious contributions (Szebehely[4]; Bhatnagar and Hallan[5]; Ab-

dulRaheem and Singh[6]; Singh and Begha[7]; and Abouelmagd 

et al. [8]) have been made on the study of the restricted three-body 

problem under the effects of small perturbations in the centrifugal 

and Coriolis forces. Szebehely [4] investigated the stability of 

triangular points by keeping the centrifugal force constant and 

found that the Coriolis force is a stabilizing force.  

AbdulRaheem and Singh [6] investigated the stability of equilibri-

um points when the primaries are radiating oblate spheroids, and 

small perturbations are given to the Coriolis and centrifugal forc-

es. They observed that the Coriolis force has a stabilizing tenden-

cy; while the centrifugal force, radiation, and the oblateness of the 

primaries have destabilizing effects. However, the overall effect 

decreases the range of stability. Abouelmagd et al. [8] studied the 

existence of equilibrium points, their linear stability and periodic 

orbits around these points under the effects of oblateness of three 

participating bodies as well as small perturbations in the Coriolis 

and centrifugal forces. They found that the positions of the collin-

ear points, and the y-coordinate of the triangular points are not 

affected by the small perturbation in the Coriolis force. While the 

x-coordinate of triangular points is neither affected by a perturba-

tion in the Coriolis force nor the oblateness of the third body. Fur-

thermore, the critical mass value and the elements of periodic 

orbits around the equilibrium points such as the semi-major and 

the semi-minor axes, the angular frequencies and corresponding 

periods may change by all the parameters of oblateness as well as 

the small perturbations in the Coriolis and centrifugal forces. 

The bodies in the R3BP are strictly spherical in shape, but in na-

ture, celestial bodies are not perfect spheres. They are either oblate 

or triaxial. The Earth, Jupiter, Saturn, Regulus, Neutron stars and 

black dwarfs are oblate. The Moon, Pluto and its moon Charon are 

triaxial. The lack of sphericity, triaxiality or oblateness of the ce-

lestial bodies causes large perturbations from a two-body orbit. 

The motions of artificial satellite are examples of this. The most 

striking example of perturbations arising from the solar system is 

the orbit of the fifth satellite of Jupiter, Amalthea. This planet is so 

oblate, and the satellite’s orbit is so small that its line of apsides 

advances about 9000 in a year (Moulton [9]). These inspired sev-

eral researchers (SubbaRao and Sharma [10]; Elipe and Ferrer 

[11]; Khanna and Bhatnagar[12]; Singh[13]; Sharma et al.[14]) to 

include non-sphericity of the bodies in their studies of the R3BP. 

The general theory of relativity was developed by Einstein a cen-

tury ago. Since then, it has become the standard theory of gravity, 

especially important to the field of fundamental astrometry, astro-

physics, cosmology and experimental gravitational physics. 

Brumberg [15], [16] studied the relativistic n-body problem of 

three bodies in more details and collected most of the important 

results on relativistic celestial mechanics. He did not only obtain 

the equations of motion for the general problem of three bodies 
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but also deduced the equations of motion for the restricted prob-

lem of three bodies. 

Bhatnagar and Hallan [17] studied the existence and linear stabil-

ity of the triangular points 4,5L  in the relativistic R3BP, and found 

that 4,5L are always unstable in the whole range 
1

0
2

   in con-

trast to the classical R3BP where they are stable for 0  , where

  is the mass ratio, and 0 0.03852...   is the Routh’s value.  

Douskos and Perdios [18] investigated the stability of the triangu-

lar points in the relativistic R3BP and contrary to the results of 

Bhatnagar and Hallan [17], they they obtained a region of linear 

stability in the parameter space 0 2

17 69
0

486c
     where

0 0.03852...   is Routh’s value. 

Recently, some studies have been focused on the relativistic R3BP 

by taking the primaries as source of radiation or oblate spheroids 

or both and the small perturbations in the centrifugal and Coriolis 

forces. 

Katour et al. [19] studied the positions of the triangular points 

within the framework of the post-Newtonian approximation when 

the masses of primaries are assumed to change under the effect of 

continuous radiation process and oblateness effects of the two 

primaries. New perturbed locations of the triangular points are 

computed. 

Singh and Bello [20] investigated the effect of radiation pressure 

of the bigger primary in the relativistic R3BP, and they found that 

the positions of triangular points and their stability are affected by 

both the relativistic and radiation factors.  

Singh and Bello [21] examined the effect of a small perturbation 

in the centrifugal force in the relativistic R3BP and noticed that 

the positions and stability of the triangular points are affected by 

both the relativistic factor and a small perturbation in the centrifu-

gal force. Singh and Bello [22] studied the effect of small pertur-

bations in 1 2,   in centrifugal and Coriolis forces respectively in 

the relativistic R3BP without considering the coupling terms

 
2

1,2i i
c




 
where c is the speed of light. They observed that the 

stability region depends on the relativistic terms and small pertur-

bations 1 2,  ; while the y-coordinate depends upon relativistic and 

centrifugal terms and the x-coordinate depends on relativistic 

terms only. 

The classical problem of three bodies has been studied by consid-

ering various aspects such as the shape of the bodies, influence of 

the perturbations in the Coriolis and the centrifugal forces, etc. to 

make the problem more realistic. Some of the planets, like Saturn 

and Jupiter are sufficiently oblate. It has been seen that oblateness 

of the body plays an important role in the restricted three-body 

problem. 

Hence, the idea of small perturbations in the Coriolis and centrifu-

gal forces together with oblateness of the body raises a curiosity in 

our mind to study the stability of triangular points in the relativ-

istic R3BP. 

This paper is organized as follows: In Sect. 2, the equations gov-

erning the motion are presented; Sect. 3 describes the positions of 

triangular points, while their linear stability is analyzed in Sect.4; 

the discussion is given in Sect. 5, finally sect. 6 summarizes the 

results of this paper. 

2. Equations of motion 

The pertinent equations of motion of an infinitesimal mass in the 

relativistic R3BP in a barycentric synodic coordinate system  ,   

and dimensionless variables can be written as Brumberg [15] and 

Bhatnagar and Hallan [17]. 

 

2

2

W d W
n

dt

W d W
n

dt

 
 

 
 

  
       

  
    

  

                                                          

(1) 

 

With 

 

 

 

2 2

1 2

2 2

2

2
2 2 2 2

2 2 2 2

1 2

2 2

2 2
1 21 2

2

1 1
( )

2

1 3 1
1 (1 ) ( )

2 3

1
2( ) ( )

8

3 1
2( ) ( )

2

1 (1 ) 7 1 1
(1 ) 4

2 2

2

W

c

 
 

 

   

     

 
     

 

 
   

  




    

  
      

 

    

 
         

 

      
              


3 3

1 2 1 21 2

1 1 3 2 1 3

2 2

   

    

                   

                       (2) 

 

2

3 1
1 1 (1 )

32
n

c
 

 
    

 
                                                            (3) 

 

2 2 2
1

2 2 2
2

( )

( 1)

   

   

  

   

                                                                     (4) 

 

Where 
1

0
2

   is the ratio of the mass of the smaller primary to 

the total mass of the primaries, 1 and 2  are distances of the 

infinitesimal mass from the bigger and smaller primary, respec-

tively;
 

n
 
is the mean motion of the primaries; c is the velocity of 

light. We now introduce small perturbations in the centrifugal and 

Coriolis forces by parameters 11 ;   1 2 21, 1 ; 1,      

and oblateness of the bigger primary by the parameter 

2 2

1 2
1

5

AE AP
A

R


   (McCuskey [23]) where AE  and AP  are 

the equatorial and polar radii of the bigger primary, and R is the 

distance between the primaries. Neglecting second and higher 

powers of 1A , we take equations of motion as: 
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And n , the perturbed mean motion of the primaries is given by 
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3. Locations of triangular points 

The libration points are obtained from equations (5) after putting 
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and 0,F   
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The triangular points are the solutions of equation (8) with 0.   

Since 
2

1
1

c
  and in the case 

2

1
0

c
 and in the absence of small 

perturbations and oblateness  1 2 1. . 0i e A    , one can obtain

1 2 1;    we assume in the relativistic R3BP that 1 1 x    and 

2 1 y    where , 1,x y   may be depending upon relativistic, 

perturbations and oblateness factors. Substituting these values in 

the equations (4), solving them for ,  and ignoring terms of 

second and higher powers of x  and y , we get 
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Substituting the values of 1 2, , ,     and neglecting of second and 

higher orders terms 2x , 2y  , 1 2 12 2
, , , ,

x y
A

c c
   etc in equations (8) 

with 0  , we have 
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Solving these equations for x  and y , we obtain 
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Thus, the coordinates of the triangular points  ,   denoted by

4L  and 5L respectively are, 
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4. Stability of 4L  

Let (a,b) be the coordinates of the triangular points 4L  
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       
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3 3 3 3
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
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Where, 
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,
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     

 

 

Thus, the variational equations of motion corresponding to (5), on 

making use of equation (7), can be expressed as 

 

1 2 3 4 5 6 0,P P P P P P                                                   (12) 

 

1 2 3 4 5 6 0.q q q q q q          
 

 

Where, 
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 

 

1 2 2 2 3 2

4 2 1 2 22

5 6

1 3 2

3 3 1 2 22

1 3 4 3 1

5 6 1

1 , ,

3 3 1
, 2 1 1 (1 ) 1 ,

4 32

, ,

, 1

3 3 1
, 2 1 1 (1 ) 1

4 32

, ,

,

P C P D P A

C P B A D
c

P A P B

q C q

D q A
c

C A q B D

q E q B

   

   

    

    
            

    

   

  

  
          

  

  

     

 

 

Then, the corresponding characteristic equation is  

 

4
1 2 2 1 1 6 5 2 3 4

2
6 1 2 5 4 3 5 6 6 5

( ) (

) 0

P q P q P q P q P q

P q P q P q P q P q





    

                                            
(13) 

Substituting the values of , , 1,2,...,6i iP q i   in (13) and neglecting 

second and higher powers of small quantities, the characteristic 

equation (13) becomes 

 
4 2 0b d                                                                             (14) 

 

Where, 

 

 2 3

12 2

2 2

1 22 2

80 108 105 18
9 3

1 3
2 8
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3 8 ,

4 2
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c c
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  


   
 

       
         
   

 

          
      
      
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4
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c

A
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c

c
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   
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
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
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   



   






     
  

  

     
 
  

 

 

For 
2

1
0

c
    and in the absence of small perturbations in the cen-

trifugal and Coriolis forces and oblateness  (14) 

1 2 1( . . 0),i e A    reduces to its well-known classical restricted 

problem form (see e.g. Szebehely [1]): 

 

4 2 27
(1 ) 0.

4
      

 
 

The discriminant of (14) is 

 



4
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3
1 1 2 1 12 2 2 2

2
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8
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
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

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3 6 16 .A A

c c c c
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(15) 

 

Its roots are 

 

2

2

b

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

                                                                             (16) 
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From (15), we have 
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1
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

 
 
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From (17), it can be easily seen that  is monotone decreasing in

1
0, .

2
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 
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Since  

0
  and   1

2


  are of opposite signs, and   is mono-

tone decreasing and continuous, there is one value of  , e.g. c  

in the interval
1

0,
2

 
 
 

 for which  vanishes.  

Solving the equation 0  , using (13), we obtain critical value of 

the mass parameter as 
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1 22 2

1 1 17 69 1 13
69 1

2 18 9 69486

4 36 1919733 15493 69

27 69536544

34155 175301 69 47 69

804816 81

c A
c

A
c

c c



 

 

 
      

 

   
  

 
 

   
    

  
  

                                (19)

 

 

There are three possible cases regarding the sign of the discrimi-

nant   

i) When 0 c   , 0,  the values of 2  given by (16) are 

negative and therefore all the four characteristic roots are 

distinct pure imaginary numbers. Hence, the triangular 

points are stable. 

 

ii) When,
1

, 0
2

c      the real parts of the characteristic 

roots are positive. Therefore, the triangular points are unsta-

ble. 

 

 

iii) When, , 0c    the values of 2  given by (16) are the 

same. This induces instability of the triangular points. 

 

Hence, the stability region is 
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 

   
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                       (20)

 

 

Where 

 

0 0.03852...   Is Routh’s value                                                  

 

Equation (20) can be written as: 

 

00 p                                                                            (21)

 

 

With 
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5. Discussion 

Equation (1)-(7) describe the motion of a third body under the 

influence of oblateness of the bigger primary together with small 

perturbations in the Coriolis and centrifugal forces in the relativ-

istic R3BP. Equations (11) give the positions of triangular equilib-

rium points, which are affected by the oblateness, relativistic fac-

tor and a small perturbation in the centrifugal force, but not that of 

Coriolis force because equation (11) is independent of the parame-

ter 2.
 

Equations (19) gives the critical value of the mass parameter c  of 

the system which depends upon small perturbations 1 2,   given 

in the centrifugal and Coriolis forces, oblateness parameter 1A  

and relativistic factor. 

The critical value is used to determine the size of the region of 

stability of the triangular points and also helps in analyzing the 

behavior of the parameters involved therein. Equation (20) de-

scribes the region of stability. It is obvious from (20) that the rela-

tivistic term, oblateness coefficient and a small perturbation 1 0  , 

in the centrifugal force all shrink the stability region independent-

ly; whereas the small perturbation in the centrifugal force expands 

it for 1 0   and that of the Coriolis force expands it for 2 0  and 

shrinks it for 2 0.   This can be explained by the presence of neg-

ative coefficients of the formers and positive coefficient of the 

latter. 

Even on considering the coupling terms 1
2

A

c
 and  

2
1,2i i

c


  

which are very small quantities, from mathematical points of view 

it can be observed from (20) that the joint effect of relativistic and 

oblateness and that of relativistic and a small perturbation 1 0   in 

the centrifugal force expand the size of region of stability; whereas 

the joint effect of relativistic and a small perturbation 2  in Corio-

lis force reduces it for 2 0  and expands it for 2 0.   Similarly, 

the joint effect of relativistic term and a small perturbation 1  in 

the centrifugal force reduces it for 1 0.   This is also as a result of 

the positive coefficients of the coupling terms 1
2

A

c
 and 1

2c


 and 

negative coefficient of the coupling term 2
2c


. However, the net 

effect is that the size of region of stability increases or decreases 

or remains unchanged according as 0P   or 0P   or 0,P  re-

spectively. In the absence of perturbations and oblateness 

 1 0, 1,2 ,i A i     the results of the present study are in agree-

ment with those of Douskos and Perdios [18]and disagree with 

those of Bhatnagar and Hallan [17].In the absence of a small per-

turbation in the Coriolis force and oblateness  2 1 0, ,A   the 

results of this study coincide with those of Singh and Bello [20].In 

the absence of the coupling terms and oblateness

12
0, 0, 1,2 ,i A i

c

 
   

 
the present results of the present study are 

in accordance with those of Singh and Bello [22]. 

In the absence of relativistic terms and centrifugal force 

12

1
0, 0 ,

c


 
  

 
 the results coincide with those of Szebehely 

[4].In the absence of relativistic terms and oblateness 

12

1
0, 0 ,A

c

 
  

 
 our results are in agreement with those of 

Bhatnagar and Hallan [5].In the absence of relativistic terms and 

perturbations 
2

1
0, 0, 1,2 ,i i

c


 
   

 
 the results of the present 

study coincide with those of SubbaRao and Sharma [10].In the 

absence of relativistic terms, our results are in accordance with 

those of Abouelmagd et al. [8] when the bigger primary is oblate 

and the mixed effect  1 1,2iA i   is ignored in their study. 
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6. Conclusion 

By considering a bigger primary as an oblate spheroid body under 

the influence of small perturbations in the Coriolis and centrifugal 

forces in the relativistic R3BP, we have determined the positions 

of the triangular points and investigated their linear stability. It is 

found that the effect of relativistic terms, oblateness and a small 

change in the centrifugal force on these positions are quite promi-

nent. It may also be seen that relativistic terms, oblateness and a 

small change in the centrifugal force all reduce the size of region 

of stability independently, where a small perturbation in the Corio-

lis force expands it. 

We have observed the expressions for A, D, A2, C2 in Bhatnagar 

and Hallan [17] differ from the present study when the oblateness 

and small perturbations in the Coriolis and centrifugal forces are 

absent  1. . 0, 1,2ii e A i    . Consequently, the expressions P1, 

P3, P4, P5 and the characteristic equation are also different. This 

led them (Bhatnagar and Hallan 1998) to infer that the triangular 

points are unstable, contrary to Douskos and Perdios and our re-

sults. It is important to note that the results of the present study 

differ from those of Singh and Bello [22] in the sense that they did 

not include the oblateness parameter 1A and coupling terms

 
2

1,2i i
c


  in their study. 
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