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Abstract 
 

We have examined the stability of triangular equilibrium points in photogravitational elliptic restricted three-body problem with Poyn-

ting-Robertson drag. We suppose that smaller primary is an oblate spheroid. We have taken bigger primary as radiating. We have found 

the location of triangular equilibrium points and characteristic equation of the problem. We conclude that triangular equilibrium points 

remain unstable, different from classical case. 
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1. Introduction 

The elliptic restricted three-body problem (ERTBP) is a generali-

zation of the classical restricted three-body problem (RTBP). It 

describes the three-dimensional motion of a small particle, called 

the third body (infinitesimal mass) under the gravitational attrac-

tion force of two finite bodies, called the primaries. They revolve 

in elliptic orbit in a plane around their common centre of mass. 

The infinitesimal mass moves in the plane of motion of the prima-

ries and does not influence the motion of the primaries. ERTBP is 

more realistic than RTBP, because the orbits of a large number of 

celestial bodies are elliptic rather than circular. The stability of 

triangular points in the ERTBP was investigated by Danby [3]. 

Broucke [1] studied the stability of periodic orbits in the ERTBP.  

Radiation and oblateness of the primaries also affect the motion of 

the infinitesimal mass. Many researchers studied the restricted 

problem taking into account one or both the primaries as oblate 

spheroids and radiating. Sahoo and Ishwar [11] examined stability 

of collinear points in the generalized photogravitational ERTBP. 

Zimovshchikov and Tkhai [14] investigated stability of libration 

points and resonance phenomenon in the photogravitational 

ERTBP. A.Narayan and C.R.Kumar [7] studied the effect of pho-

togravitational and oblateness on the triangular Lagrangian points 

in ERTBP. J.Singh and A. Umar [12] studied the stability of trian-

gular points in ERTBP under radiating and oblate primaries. 

Due to radiation, a drag force known as Poynting-Robertson drag, 

also affect the motion of infinitesimal mass. Poynting [8] stated 

that the particle, such as, small meteors or cosmic dust were com-

parably affected by gravitational and light radiation force, as they 

approach luminous celestial bodies. He also suggested that infini-

tesimal body in solar orbit suffers a gradual loss of angular mo-

mentum and ultimately spiral into the Sun. Robertson [9] modified 

the theory of Poynting by considering only terms of first order in 

the ratio of velocity of the particle to that of light. The radiation 

force is given by. 

F = Fp {
R⃗⃗ 

R
−

V⃗⃗ R⃗⃗ R⃗⃗ 

CR⃗⃗ R
−

V⃗⃗ 

C
} 

 

The last two terms constitute Poynting-Robertson (P-R) effect. 

Wyatt and Whipple [13] have shown that P-R effect has been of 

very little significance. Chernikov [2] has dealt with the Sun-

Planet-Particle model and conclude that due to P-R drag triangular 

points are unstable. Schuerman [10] studied the classical RTBP by 

including the radiation pressure and P-R effect. Murray [6] inves-

tigated location and stability of the five Lagranginan points in the 

CRTBP when infinitesimal mass is acted by a variety of drag 

forces. Liou and Zook [5] examined the effect of radiation pres-

sure, P-R drag and Solar wind drag on dust grains trapped in mean 

motion resonance with Sun-Jupiter in RTBP. Kushvah and Ishwar 

[4] examined the linear stability of generalized photogravitational 

RTBP with P-R drag. 

The present study aims to examine the motion of the infinitesimal 

mass in the ERTBP with radiation, oblateness and P-R drag. We 

suppose that bigger primary is radiating and smaller is an oblate 

spheroid. It will contribute a lot to understand the effects of eccen-

tricity, radiation, oblateness and P-R drag on the celestial and 

stellar systems. The motion of a particle in the double stellar sys-

tem may be of particular interest, because the system forms con-

siderable part of all stellar systems. The results obtained will be 

useful to future space missions. The results may be applied for 

placement of large self-contained space colonies into stable equi-

librium point at the L4 or L5 Lagrange points. 

This paper is divided in five sections. Section (2) contains equa-

tions of motion of our problem. In section (3) and (4), we have 

found location of triangular equilibrium points and examined sta-

bility of triangular equilibrium points respectively while section 

(5) concludes the paper. 

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.sciencepubco.com/index.php/IJAA
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2. Equations of motion 

We consider two bodies (primaries) of masses m1 and m2 with 

m1> m2 moving in a plane around their common center of mass in 

elliptic orbit and a third body (infinitesimal mass) of mass m is 

moving in a plane of motion of the primaries. Equations of motion 

of our problem in rotating and pulsating co-ordinate system are 

given by (Sahoo and Ishwar) [11] 

 

x′′ − 2y′ =
∂Ω

∂x
+ Fx = Ux                                                             (1) 

y′′ + 2x′ =
∂Ω

∂y
+ Fy = Uy           (2) 

z′′ =
∂Ω

∂z
+ Fz = Uz                (3) 

 

where the force function 

 

U =
1

√1−e2
[
x2+y2

2
+

1

n2
{
(1−μ)q1

r1
+

μ

r2
+

μA2

2r2
3 + W1 (

(x+μ)x′+yy′+zz′

2r1
2 −

n  arctan (
y

x+μ
))}]  

 

Ω =
1

√1−e2
[
x2+y2

2
+

1

n2 {
(1−μ)q1

r1
+

μ

r2
+

μA2

2r2
3}]  

 

F =
W1

n2√1−e2
{
(x+μ)x′+yy′+zz′

2r1
2 n  arctan(

y

x+μ
)}  

 

W1 =
(1−μ)(1−q1)

cd
 . 

 

Here dash (′ ) represents differenciation with respect to ecentric 

anomaly (E). The mean motion of our problem is given by 

 

n2 =
(1+

3A2
2

)√1+e2

a(1−e2)
           (4) 

ri = (x + xi)
2 + y2 + z2(i = 1,2)         (5) 

x1 = −μ , x2 = 1 − μ, μ =
m2

m1+m2
         (6) 

 

Here, (x, y, z), ( x1, 0,0) and ( x2 , 0,0)  are the coordinate of 

m,m1and m2  respectively. q1 is mass reduction factor and W1 is 

P-R drag due to bigger primary m1. A2 =
re
2−rp

2

5r2
 is oblateness coef-

ficient due to smaller primary m2, where re, rprepresents equato-

rial radii and polar radii respectively. ri(i = 1,2) are the distance 

of the infinitesimal mass from m1and m2  respectively. Semi-

major axis and eccentricity of orbit are denoted by a and e respec-

tively. cd is dimensionless velocity of light. For all numerical cal-

culations, we use a=0.80, e=0.20,  μ = 0.00003 and 

cd=299792458. 

Fx, Fyare the partial derivatives of drag force (Kushvah and Ishwar 

2006 [4]) with respect to x and y respectively, which are purely 

functions of the particle’s position and velocity. Now multiplying 

equations (1), (2) and (3) by 2x′, 2y′ and 2z′ respectively and add-

ing, we obtain 

 
dC

dt
= −2(x′Fx + y′Fy)          (7) 

C=2Ω − x′2 − y′2,the quantity C is Jacobi Integral. The zero ve-

locity curves are given by C=2Ω. 

3. Location of triangular equilibrium points 

In order to find the Lagrangian equilibrium points, equations (1), 

(2) and (3) are solved with the condition that all derivatives are 

zero, that is 

 

 Ux = Uy = Uz = 0. 

 

x −
1

n2 {
(1−μ)(x+μ)q1

r1
3 +

μ(x+μ−1)

r2
3 +

3μA2(x+μ−1)

2r2
5 } −

W1

n2r1
2 (

(x+μ)

r1
2

[(x +

μ)x′ + yy′ + zz′] + x′ − ny) = 0         (8) 

y −
1

n2 {
(1−μ)yq1

r1
3 +

μy

r2
3 +

3μA2y

2r2
5 } −

W1

n2r1
2 (

y

r1
2 [(x + μ)x′ + yy′ + zz′] +

y′ + n(x + μ)) = 0           (9) 

{
(1−μ)zq1

r1
3 +

μz

r2
3 +

3μA2z

2r2
5 } +

W1

r1
2 (

z

r1
2
[(x + μ)x′ + yy′ + zz′] + z′) = 0.

          (10) 

 

Now, for triangular equilibrium points Ux = 0, Uy = 0, x ≠ 0, y ≠

0 and z = 0 because motion is in xy plane. Then from equations 

(8) and (9), we have. 

 

x −
1

n2 {
(1−μ)(x+μ)q1

r1
3 +

μ(x+μ−1)

r2
3 +

3μA2(x+μ−1)

2r2
5 } +

W1

n2r1
2 ny = 0    (11) 

y −
1

n2
{
(1−μ)yq1

r1
3 +

μy

r2
3 +

3μA2y

2r2
5 } −

W1

n2r1
2 n(x + μ) = 0     (12) 

 

From equation (12), we have 

 

[n2 −
(1−μ)q1

r1
3 −

μ

r2
3 −

3μA2

2r2
5 ] y0 =

W1

r1
2  n(x + μ)      (13) 

 

y0 is ordinate of photogravitational ERTBP, which is given by 

 

y0 = ±[δ2(1 − e2) −
1

4
{1 + 2 (δ

2 − a
2

3) (1 − e2)}]

1

2
  

where δ = (aq1)
1

3. 

 

Equations (11) and (12) are multiplied by y and (x+ μ) respective-

ly and subtracting, we have 

 

[n2 −
1

r2
3 −

3A2

2r2
5 ] μy0 = nW1.        (14) 

 

In photogravitational ERTBP, that is when oblateness and P-R 

drag is absent and bigger primary is radiating then 

 

r1 = (
q1

n2)
1

3⁄
         (15) 

r2 =
1

n
2

3⁄
          (16) 

 

Now, we suppose due to P-R drag and oblateness perturbation in 

r1 and r2 are ϵ1 and ϵ2 (ϵ1,  ϵ2 ≪ 1) respectively. Then 

 

r1 = (
q1

n2)
1

3⁄
+ϵ1         (17) 

r2 =
1

n
2

3⁄
+ ϵ2.                        (18) 

 

Considering only terms e2and A2 and neglecting their product, 

equation (4) gives 

 

n2 =
1

a
(1 +

3A2

2
+

3e2

2
)        (19) 

 

With the help of equation (19) with A2 = 0, equations (17) and 

(18) gives  

r1 = (aq1)
1

3⁄ (1 −
e2

2
) + ϵ1                                      (20) 

r2 = a
1

3⁄ (1 −
e2

2
) +  ϵ2        (21) 

 

With the help of equations (19), (20) and (21), we have from equa-

tions (13) and (14) (taken only first order terms) 

 

ϵ1 =
(aq1)

1
3⁄ a

1
2⁄ W1

6(1−μ)y0
(1 +

3A2

4
−

5e2

4
) [{(1 + e2) − a

2
3⁄ } (aq1)

−2
3⁄ −

1] −
1

2
A2(aq1)

1
3⁄          (22) 

ϵ2 =
W1a

5
6⁄

3μy0
(1 +

3A2

4
−

5A2a
−2

3⁄

2
−

5e2

4
) −

1

2
A2a

1
3⁄ (1 − a

−2
3⁄ )(23) 
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Substituting the values of ϵ1 and ϵ2 in equations (20) and (21) 

respectively, we have 

 

r1 = (aq1)
1

3⁄ (1 −
e2

2
) +

(aq1)
1

3⁄ a
1

2⁄ W1

6(1−μ)y0
  

(1 +
3A2

4
−

5e2

4
) [{(1 + e2) − a

2
3⁄ } (aq1)

−2
3⁄ − 1] −

1

2
A2(aq1)

1
3⁄          (24) 

 

r2 = a
1

3⁄ (1 −
e2

2
) +

W1a
5

6⁄

3μy0
(1 +

3A2

4
−

5A2a
−2

3⁄

2
−

5e2

4
) −

1

2
A2a

1
3⁄ (1 − a

−2
3⁄ )        (25) 

 

Since,   (x + μ) =
r1
2−r2

2+1

2
 ,y2 = r1

2 − (x + μ)2      (26) 

 

Using equations (24),(25) and (26) and solve for x, y, we have 

 

x =
1

2
− μ +

1

2
[(aq1)

2
3⁄ (1 − A2 − e2) − a

2
3⁄ (1 − A2 − e2 +

A2a
−2

3⁄ ] +
W1a

1
2⁄

3y0(1−μ)μ
{(1 +

A2

4
−

3e2

4
)

μ

2
− (a

2
3⁄ + (aq1)

2
3⁄ ) (1 +

A2

4
−

7e2

4
)

μ

2
− (1 − μ)a

2
3⁄ (1 + 

A2

4
− 2A2a

−2
3⁄ −

7e2

4
)}            (27) 

 

y = ± [(aq1)
2

3⁄ (1 − A2 − e2) −
1

4
{1 + 2 ((aq1)

2
3⁄ − a

2
3⁄ ) (1 −

e2) + ((aq1)
2

3⁄ − a
2

3⁄ )
2
(1 − 2e2) − 2A2(1 + (aq1)

2
3⁄ −

a
2

3⁄ )2} +
W1a

1
2⁄

3y0(1−μ)μ
{(1 +

A2

4
−

3e2

4
)

μ

2
− μ(aq1)

2
3⁄ (1 +

A2

4
−

7e2

4
) + ((aq1)

4
3⁄ − a

4
3⁄ ) (1 +

A2

4
−

11e2

4
)

μ

2
+ (1 − μ)a

2
3⁄ (1 +

 
A2

4
− 2A2a

−2
3⁄ −

7e2

4
) + (1 − μ)a

2
3⁄ ((aq1)

2
3⁄ − a

2
3⁄ ) (1 +

A2

4
−

2A2a
−2

3⁄ −
11e2

4
) −

μ

2
A2 (1 + (aq1)

2
3⁄ − a

2
3⁄ ) ((aq1)

2
3⁄ +

a
2

3⁄ − 1) − (1 − μ)a
2

3⁄ (1 + (aq1)
2

3⁄ − a
2

3⁄ ) A2}]

1
2⁄

           (28) 

 

The position of triangular equilibrium points (L4 (5)) is given by 

equations (27) and (28) which are valid for W1 ≪ 1,A2 ≪ 1. Fig-

ure 1 shows that perturbations (ϵ1, ϵ2 ) in r1  and r2will become 

zero, when A2 = 0 and q1 = 1. From figure 2, it is clear that x, y 

are increasing function of q1 and decreasing function of A2. Nu-

merical values of coordinate (x,y) of triangular equilibrium points 

(L4(5)) are given in table 1 and table 2, for different values of 

A2 and q1 . For the numerical calculations we have taken  μ 

=0.00003, e=0.2, a=0.8, cd=299792458, 0 ≤ q1 ≤ 1,0 ≤ A2 ≤ 1. 
 

 
Fig. 1: The effect of A2 and q1on ϵ1 and ϵ2. when e = 0.2, a = 0.8, 𝜇 = 0.00003, cd = 299792458,0 ≤ q1 ≤ 1,0 ≤ A2 ≤ 1 

 

 
Fig. 2: The effect of A2 and q1on x, y co-ordinates of triangular equilibrium points L4(5)). when e = 0.2, a = 0.8, 𝜇 = 0.00003, cd = 299792458,0 ≤

q1 ≤ 1,0 ≤ A2 ≤ 1. 
 

 
Table 1: x co-ordinate of  L4 

A2 x4: q1 = 1 x4: q1 = 0.75 x4: q1 = 0.50 x4: q1 = 0.25 x4: q1 = 0 

0.00 0.49997 0.427771 0.346882 0.250438 Complex Number 

0.25 0.37497 0.321576 0.261755 0.190431 Complex Number 

0.50 0.24997 0.21538 0.176628 0.130425 Complex Number 
0.75 0.12497 0.109185 0.0915006 0.0704191 Complex Number 

1.00 -0.00003 0.00298943 0.00637354 0.010413 Complex Number 

Notes: Numerical values of x coordinate of L4 for different values of A2 and q1. 0 ≤ A2, q1 ≤ 1. 
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Table 2: y co-ordinate of  L4 

2 y4: q1 = 1 y4: q1 = 0.75 y4: q1 = 0.50 y4: q1 = 0.25 y4: q1 = 0 

0.00 0.759805 0.707049 0.633136 0.515451 Complex Number 

0.25 0.697753 0.642103 0.568434 0.457167 Complex Number 
0.50 0.629616 0.59801 0.495352 0.390275 Complex Number 

0.75 0.553148 0.486879 0.409426 0.309236 Complex Number 

1.00 0.464251 0.386559 0.299809 0.197330 Complex Number 

Notes: Numerical values of y coordinate of L4 for different values of A2and q1. 0 ≤ A2, q1 ≤ 1 

 

4. Stability of triangular equilibrium points 

Rewriting equations of motion, we have 

 

x′′ − 2y′ =
∂Ω

∂x
−

W1N1

n2r1
2√1−e2

= Ux       (29) 

y′′ + 2x′ =
∂Ω

∂y
−

W1N2

n2r1
2√1−e2

= Uy       (30) 

z′′ =
∂Ω

∂z
−

W1N3

n2r1
2√1−e2

= Uz        (31) 

 

where, 

 

N1 =
(x+μ)N

r1
2 + x′ − ny, 

N2 =
yN

r1
2 + y′ + n(x + μ)  

N3 =
zN

r1
2 + z′ ,N=(x + μ)x′ + yy′ + zz′. 

 

We suppose that α, β, γ be the small displacement from equilibrium 

points ( x∗,y∗, z∗)  then x = x∗ +  α, y = y∗ +  β, z = z∗ + γ . At 

equilibrium points (x∗,y∗, z∗),x′∗ = y′
∗
= z′∗ = x′′∗ = y′′

∗
= z′′∗ =

0. Hence, the equations of motion corresponding to the system of 

equations (29), (30) and (31), by using Taylor’s theorem, are writ-

ten as 

 

α′′ − 2β′ = Ux
0 + αUxx

0 + βUxy
0 + γUxz

0 + α′Uxx′
0 + β′Uxy′

0 + γ′Uxz′
0  

          (32) 

 

β′′ + 2α′ = Uy
0 + αUyx

0 + βUyy
0 + γUyz

0 + α′Uyx′
0 + β′Uyy′

0 + γ′Uyz′
0

          (33) 

γ′′ = Uz
0 + αUzx

0 + βUzy
0 + γUzz

0 + α′Uzx′
0 + β′Uzy′

0 + γ′Uzz′
0        (34) 

 

where superscript ‘0’ indicates that the partial derivatives are to be 

evaluated at the equilibrium point (x∗,y∗, z∗). At (x∗,y∗, z∗ , Ux
0 =

Uy
0 = Uz

0 = Uxz
0 = Uyz

0 = Uzx
0 = Uzy

0 = Uxz′
0 = Uyz′

0 = Uzx′
0 =

Uyz′
0 = 0.  Hence system of equations (32), (33) and (34) are writ-

ten as 

 

α′′ − 2β′ = αUxx
0 + βUxy

0 + α′Uxx′
0 + β′Uxy′

0       (35) 

β′′ + 2α′ = αUyx
0 + βUyy

0 + α′Uyx′
0 + β′Uyy′

0       (36) 

γ′′ = γUzz
0 + γ′Uzz′

0  .        (37) 

 

The value of second order partial derivatives at (x∗,y∗, 0) are 

 

Uxx
0 =
1

√1−e2
[1 − a (1 −

3A2

2
−

3e2

2
) (f∗ − 3J1∗) −

2W1a
1

2⁄ (x∗,+μ)y∗

r1∗
4 (1 −

3A2

4
−

3e2

4
)]  

Uxy
0 =

a

√1−e2
[3g∗ (1 −

3A2

2
−

3e2

2
) +

W1a
−1

2⁄

r1∗
2 (1 −

3A2

4
−

3e2

4
) (1 −

2y∗
2

r1∗
2 )]  

Uxx′
0 = −

W1a

r1∗
2 √1−e2

(1 −
3A2

2
−

3e2

2
) [1 +

(x∗+μ)2

r1∗
2 ]  

Uyx
0 =

a

√1−e2
[3g∗ (1 −

3A2

2
−

3e2

2
) −

W1a
−1

2⁄

r1∗
2 (1 −

3A2

4
−

3e2

4
) (1 −

2(x∗,+μ)
2

r1∗
2 )]  

 

Uyy
0 =

1

√1−e2
[1 − a (1 −

3A2

2
−

3e2

2
) (f∗ − 3J2∗) +

2W1a
1

2⁄ (x∗,+μ)y∗

r1∗
4 (1 −

3A2

4
−

3e2

4
)]  

Uyy′
0 = −

W1a

r1∗
2 √1−e2

(1 −
3A2

2
−

3e2

2
) [1 +

y
∗

2

r2∗
1 ]  

Uxy′
0 = −

W1a

r1∗
4 √1−e2

(1 −
3A2

2
−

3e2

2
) (x∗ + μ)y

∗
= Uyx′

0   

Uzz
0 =

−a

√1−e2
(1 −

3A2

2
−

3e2

2
) [

(1−μ)q
1

r1∗
3 +

μ

r2∗
3 +

3μA2

2r2∗
5 ]  

Uzz′
0  =−

W1a

r1∗
2 √1−e2

(1 −
3A2

2
−

3e2

2
) 

 

where 

 

f∗ =
(1−μ)q

1

r1∗
3 +

μ

r2∗
3 +

3μA2

2r2∗
5   

g
∗
=

q
1
(1−μ)(x∗+μ)y∗

r1∗
5 +

μ(x∗+μ−1)y∗

r2∗
5 +

5μA2(x∗+μ−1)y∗

2r2∗
7   

J1∗ =
q

1
(1−μ)(x∗+μ)2

r1∗
5 +

μ(x∗+μ−1)2

r2∗
5 +

5μA2(x∗+μ−1)2

2r2∗
7   

J2∗ =
q

1
(1−μ)y∗

2

r1∗
5 +

μy∗
2

r2∗
5 +

5μA2y∗
2

2r2∗
7   

 

Star (∗) represents the value at equilibrium point(x
∗,

y
∗
, z∗).  We 

suppose α = A1eλt, β = B1eλt and γ = C1eλt.  Using these values, 

the system of equations (35), (36) and (37) are written as 

 

(λ
2 − Uxx

0 − λUxx′
0 )A1 + [− (2 + Uxy′

0 ) λ − Uxy
0 ] B1 = 0     (38) 

[(2 − Uyx′
0 ) λ − Uyx

0 ] A1 + (λ
2 − λUyy′

0 − Uyy
0 ) B1 = 0     (39) 

(λ
2 − λUzz′

0 − Uzz
0 )C1 = 0        (40) 

 

From equation (40), we have λ =
Uzż

0 ±√(Uzz′
0 )

2
+4Uzz

0

2
. After substitut-

ing values of partial derivatives, we have 

 

λ =

a

2
(1 −

3A2

2
−

3e2

2
) [

−W1

r1∗
2 √1−e2

± √
W1

2

r1∗
4 √1−e2

−
4f∗

a√1−e2
(1 +

3A2

2
+

3e2

2
)]  

 

Since λ consists always negative real part, hence motion is asymp-

totically stable in z direction. Now equations (38) and (39) have 

singular solution if 

 

|
λ

2 − Uxx
0 − λUxx′

0 −(2 + Uxy′
0 )λ − Uxy

0

(2 − Uyx′
0 )λ − Uyx

0 λ
2 − λUyy′

0 − Uyy
0

| = 0 

 

ie 

λ
4 + 𝑎0λ

3 + 𝑎1λ
2 + 𝑎2λ + 𝑎3 = 0       (41) 

 

This is the characteristic equation of the problem.𝑎0, 𝑎1,𝑎2and 𝑎3 

are coefficients, where 

 

𝑎0 = −(𝑈𝑥𝑥′
0 + 𝑈𝑦𝑦′

0 )  

𝑎1 = 4 − (𝑈𝑥𝑥
0 + 𝑈𝑦𝑦

0 ) + 2(𝑈𝑥𝑦′
0 − 𝑈𝑦𝑥′

0 ) + 𝑈𝑥𝑥′
0 𝑈𝑦𝑦′

0 −

𝑈𝑥𝑦′
0 𝑈𝑦𝑥′

0   
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𝑎2 = 𝑈𝑥𝑥

0 𝑈𝑦𝑦′
0 + 𝑈𝑥𝑥′

0 𝑈𝑦𝑦
0 + 2(𝑈𝑥𝑦

0 − 𝑈𝑦𝑥
0 ) − 𝑈𝑥𝑦′

0 𝑈𝑦𝑥
0 −

𝑈𝑥𝑦
0 𝑈𝑦𝑥′

0   

𝑎3 = 𝑈𝑥𝑥
0 𝑈𝑦𝑦

0 − 𝑈𝑥𝑦
0 𝑈𝑦𝑥

0 .  
 

At equilibrium point, we get 

 

𝑎0 =
3𝑊1a

𝑟1∗
2 √1−𝑒2

(1 −
3𝐴2

2
−

3𝑒2

2
)       (42) 

𝑎1 = 4 −
a

√1−𝑒2
(1 −

3𝐴2

2
−

3𝑒2

2
) [2 + 𝑓∗ +

3𝜇𝐴2

𝑟2∗
5 ]  

+
2𝑊1

2a

(1−𝑒2)𝑟1∗
4 (1 −

3𝐴2

2
−

3𝑒2

2
) = 𝑏0 + 𝑏1     (43) 

𝑏0 = 4 −
a

√1−𝑒2
(1 −

3𝐴2

2
−

3𝑒2

2
) [2 + 𝑓∗ +

3𝜇𝐴2

𝑟2∗
5 ]  

𝑏1 =
2𝑊1

2a

(1−𝑒2)𝑟1∗
4 (1 −

3𝐴2

2
−

3𝑒2

2
)       (44) 

𝑎2 =
−𝑎1

√1−𝑒2
[1 + a (1 −

3𝐴2

2
−

3𝑒2

2
) {

𝜇𝐴2

𝑟2∗
5 +

𝜇

𝑟1∗
2 𝑟2∗

5 (1 +
5𝐴2

2𝑟2∗
2 )𝑦∗

2}]  

𝑎3 =
1

1−𝑒2 [{1 − a𝑓∗ (1 −
3𝐴2

2
−

3𝑒2

2
)} {1 + a (1 −

3𝐴2

2
−

3𝑒2

2
) (2𝑓∗ +

3𝜇𝐴2

𝑟2∗
5 )} +

9a2(1−3𝐴2−3𝑒2)𝜇(1−𝜇)𝑞1

𝑟1∗
5 𝑟2∗

5 (1 +
5𝐴2

2𝑟2∗
2 ) 𝑦∗

2 +

6𝑊1a
3

2⁄

𝑟1∗
4 (1 −

9𝐴2

4
−

9𝑒2

4
) {

−𝜇𝑦∗

𝑟2∗
5 (1 +

5𝐴2

2𝑟2∗
2 ) ((𝑥∗ + 𝜇)2 + 𝑦∗

2 −

(𝑥∗ + 𝜇)} −
𝑊1

2a

𝑟1∗
4 (1 −

3𝐴2

2
−

3𝑒2

2
)].      (45) 

 

We write the four roots of the classical characteristic equa-

tion as 

 

𝜆𝑗 = ±𝑧𝑖  where j=1,2,3,4 

𝑧2 =
1

2
{1 ∓ [1 − 27𝜇(1 − 𝜇)]

1
2⁄ } .      (46) 

 

Then 

 

𝜆1,2 = ±(
27

4
𝜇(1 − 𝜇))

1
2⁄

𝑖  

𝜆3,4 = ±(1 −
27

4
𝜇(1 − 𝜇))

1
2⁄

𝑖  

 

𝜆1,2, 𝜆3,4  represent the four roots of classical case where 𝑖 = √−1. 

Due to P-R drag and oblateness, we suppose the solution of the 

characteristic equation (38) is of the form 𝜆 = 𝜆𝑗(1 + 𝑒1 + 𝑒2𝑖) =

±[−𝑒2 + (1 + 𝑒1)𝑖]𝑧 , where 𝑒1, 𝑒2 are small. We have in first 

order approximation 

 

𝜆2 = [−𝑒2 + (1 + 𝑒1)𝑖]
2𝑧2      (47) 

𝜆2 = [−(1 + 2𝑒1) − 2𝑒2𝑖]𝑧
2      (48) 

𝜆3 = ±[3𝑒2 − (1 + 3𝑒1)𝑖]𝑧
3      (49) 

𝜆4 = [1 + 4𝑒1 + 4𝑒2𝑖]𝑧
4 .       (50) 

 

Substituting these values in equation (41), neglecting product of 

𝑒1, 𝑒2with 𝑎0, 𝑎1, 𝑎2, 𝑎𝑛𝑑 𝑎3 , we get 

 

𝑒1 =
−𝑎3+𝑏0𝑧2−𝑧4

2𝑧2(2𝑧2−𝑏0)
        (51) 

𝑒2 =
∓𝑎2𝑧±𝑎0𝑧3

2𝑧2(2𝑧2−𝑏0)
         (52)     

 

If 𝑒2 ≠ 0,  then the resulting motion of particle displaced from 

equilibrium points is asymptotically stable only when all the real 

part of  𝜆  are negative. For stability, we require Re (𝜆) < 0 , 

Re(𝜆) =  
𝑎2−𝑎0𝑧2

2(2𝑧2−1)
. Taking positive sign from equation (46), we 

have 

𝑧2 = 1 −
27

4
𝜇(1 − 𝜇)       (53)

        
We consider Re (λ) < 0, then 

{𝑎2 − 𝑎0 (1 −
27

4
𝜇(1 − 𝜇))} {1 −

27

2
𝜇(1 − 𝜇)}

−1

< 0  (54)

     

𝑎2 +
27

4
𝜇(1 − 𝜇)(2𝑎2 − 𝑎0) < 𝑎0           (55) 

 
Taking negative sign from equation (46), we have 

 

0 < 𝑎2 +
27

4
𝜇(1 − 𝜇)(2𝑎2 − 𝑎0)       (56) 

 

From equations (55) and (56), we get 

 

0 < 𝑎2 +
27

4
𝜇(1 − 𝜇)(2𝑎2 − 𝑎0) < 𝑎0  

0 < 𝑎2 < 𝑎0 as 𝜇 → 0 Murray [6]       (57) 

 

Inequality (57) is necessary condition for stability of triangular 

equilibrium points 𝐿4(5) .When 𝑊1 ≠ 0,𝐴2 ≠ 0  and 𝑛2 =
1

𝑎
(1 +

3𝐴2

2
+

3𝑒2

2
) 

 

𝑎0 =
3𝑊1a

r1∗
2 √1−e2

(1 −
3A2

2
−

3e2

2
)      (58) 

𝑎2 =
−𝑎1

√1−e2
[1 + a (1 −

3A2

2
−

3e2

2
) {

μA2

r2∗
5 +

μ

r1∗
2 r2∗

5 (1 +
5A2

2r2∗
2 )}](59) 

 

Since W1 > 0 hence 𝑎0 > 0. From equation (59) it is clear 𝑎2 is 

always negative that is 𝑎2 < 0. If we consider P-R drag and ob-

lateness then 𝑎2 < 0.  This does not satisfy the necessary condi-

tion of stability, hence motion is unstable in linear sense. 

5. Conclusion 

We have studied the effect of P-R drag, radiation and oblateness 

on triangular equilibrium points in elliptic restricted three body 

problem. We have found that locations of triangular points are 

different from classical case. If we put W1 = 0, A2 = 0, q
1
=

1, a = 1 and e = 0 in equations (27) and (28), then we get x =
1

2
−

μ, y = ±
√3

2
. These are coordinate of classical RTBP. In this 

case 27μ(1 − μ) < 1, that is μ < 0.03852089. If we do not consid-

er P-R drag (W1 = 0) then L4(5) coincide with Singh and Umar 

[12]. With a = 1, e = 0 and A2 = 0 triangular equilibrium points 

are same as Schuerman [10]. Kushvah [4] studied same problem 

in circular case. He found that triangular equilibrium points are 

unstable in his problem. When we put a = 1 and e = 0 in equation 

(27) and (28), triangular equilibrium points are similar as in Kush-

vah [4]. From figure 2, we find that x and y both are increasing 

function of q
1
 and decreasing function of A2. Numerical values of 

x and y are given in table 1 and table 2. At last with the help of 

Murray [6], we conclude that triangular equilibrium points are 

unstable in linear sense in our problem. 
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