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Abstract 
 

This paper investigates the liberation points and stability of the restricted four body problem with one of the primaries as oblate body and 

the infinitesimal body is taken as variable mass. Due to oblateness, the equilateral triangular configuration is no longer exists and be-

comes an isosceles triangular configuration. Moreover, we have found seven equilibrium points out of which three are asymptotically 

stable (dark black in the tables) and rest four are unstable. 
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1. Introduction 

Many researchers have studied about the stability of the equilibri-

um points in the restricted problems. Moulton [12] studied the 

four bodies in which three bodies of spherical mass are placed at 

the vertices of an equilateral triangle. Szebehely [18] explained in 

detail in his book about the stability of restricted problems. 

Bhatnagar [3] studied the periodic orbits of collision in the plane 

circular problem of four bodies and all the primaries are spherical 

in shape, placed at the vertices of an equilateral triangle. Khanna 

[6] studied the existence and stability of libration points in the 

restricted three body problem where the smaller primary is a triax-

ial rigid body and the bigger one an oblate body. They found five 

libration points, in which three are collinear unstable points and 

two are triangular stable points and these stable points have short 

and long periodic orbits. Douskos [4] found the existence of non-

planar equilibrium points in the three-dimensional restricted three-

body problem with oblateness. Mittal [11] have studied the period-

ic orbits generated by Lagrangian solutions of the restricted three 

body problem when one of the primaries is an oblate body and 

shown the effect of oblateness on the periodic orbits. Baltagiannis 

[2] have investigated the equilibrium points and found eight liber-

ation points which are unstable in the restricted four body problem 

where the primaries are spherical in shape and placed at the verti-

ces of an equilateral triangle. Md Chand Asique [8], [9] studied 

about restricted four body problems once by taking one of the 

primaries as oblate and in another by taking primaries as photo-

gravitational and oblate or prolate. And found that there exist eight 

liberation points in which three are stable and five are unstable 

except for some values of the mass parameter. 

Researchers have also studied about restricted three and four body 

problem with variable mass ie. Shrivastava [13], Singh [14], [15], 

[16], [17], Zhang [19], Abouelmagd [1]. 

After reviewing all the literature, we impressed to do the work on 

the restricted four body problem with one of the primaries as ob-

late body and all the three primaries are placed at the vertices of a 

triangle and also the infinitesimal mass is taken as variable mass. 

The entire study has been done in various sections. In the first 

section, we have determined the mean motion and shown that 

when we replace one primary as an oblate body, the triangular 

configuration becomes isosceles instead of equilateral as in the 

classical case (Bhatnagar [3]). In the second section, we have 

found the equations of motion in the Cartesian form. In the third 

section, we have found the equilibrium points. In the fourth sec-

tion, we have actually shown the stability of equilibrium points. In 

the last section, we have concluded the problem. 

2. Equations of motion 

 
Fig. 1: Isosceles Triangular Configuration of the Primaries P1P2P3. 

 

Let P1, P2 and P3 be three bodies of masses m1, m2 and m3 moving 

in their mutual gravitational field in circular orbits around their 

center of mass C which is the geometric center of the triangular 

configuration P1P2P3. Here the body P2 is an oblate body and oth-

ers are spherical in shape. And let P1P2 = ρ12, P2P3 = ρ23 and P1P3 

= ρ13. And let the co-ordinates of Pi be (Xi, Yi) (i = 1, 2, 3). The 

center of mass can be regarded at rest by neglecting the external 

forces. If oblateness is ignored then equilateral configuration 

P1P2P3 is a solution and we have n2ℓ3 = G (m1+m2+m3) (Mccuskey 
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[7]), where ℓ is the length of the side of the equilateral triangle 

P1P2P3, n is the mean motion and G is the gravitational constant. 

Due to oblateness factor σ' equilateral triangular configuration will 

no longer exist. Let us suppose, in our case, ρ12= ℓ+ λ1, ρ23= ℓ+ λ2, 

ρ13 = ℓ+ λ3 where λ1, λ2 and λ3 <1. Proceeding as in Mccuskey [7], 

we get the following six equations in the Cartesian form  

 

'G.m G.m 3G.m .2 3 2 2( n ).X13 3 5( ) ( ) 2( )3 1 1

' G.mG.m 3G.m . 32 2( ).X ( ).X 0,2 33 5 3( ) 2( ) ( )1 1 3

'G.m G.m 3G.m .1 2 2X ( ).X1 23 3 5( ) ( ) 2( )3 2 2
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(1) 

 

These equations will have non-trivial solution, if 

 

`
,   (say),1 3 1 2

2


          

 

And 

 

`G(m +m +m ) 32 1 2 3n = [1- ( )].
3 2


                                                  (2) 

 

This means that the three bodies remain at the vertices of an isos-

celes triangle instead of an equilateral triangle as in the classical 

case.  

We shall follow the procedure of Abouelmagd [1]. The equations 

of motion for the infinitesimal variable mass when the variation of 

mass is non-isotropic and originating from one point are 

 

Gm (X X ) Gm (X X )m 1 1 2 2X X
3 3m r r
1 2

Gm (X X )3Gm '(X X ) 3 32 2 ,
5 32r r
2 3

 
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 


 

 

Gm (Y Y ) Gm (Y Y )m 1 1 2 2Y Y
3 3m r r
1 2

Gm (Y Y )3Gm '(Y Y ) 3 32 2 ,
5 32r r
2 3

 
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 


 

 

Where, 

2 2 2r (X X ) (Y Y ) ,1 11
     

 

2 2 2r (X X ) (Y Y ) ,2 22
     

 

2 2 2r (X X ) (Y Y ) .3 33
     

 

Let the co-ordinates of Pi be (xi, yi) and P be (x, y) in the rotating 

system with angular velocity n. Let  be the unit of length and 

(m1 + m2 + m3), the unit of mass and the unit of time is so chosen 

so as to make G = 1. Using the relation between the inertial and 

rotating coordinates (Abouelmagd [1]), the equations of motion in 

a rotating coordinate system for an infinitesimal variable mass P 

will be 

 

m(x  n y) +m (x 2 n y ) = Ux    

 

m(y +  n x)+ m( y + 2 n x ) = Uy  

 

Where 

 

2n 2 2 31 2 2U = (x y )  ,
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2

   
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1 5 1
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3 22 3


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
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     

                                               (3) 

 

Jacobi integral is 

 

21 n2 2 2 2 31 2 2C (x y ) (x y ) .
32 2 r r r1 2 3 2r
2

   
                               (4) 

 

According to Jeans' (1928), 

 

dm
m

dt

                                                                                      (5) 

 

Where  is constant coefficient and  is within the limits 

0.4 4.4 for the stars of the main sequence. While for the rock-

et 1,  the mass of the rocket tm m e0
 varies exponentially. 

Where m0  
is the mass of the infinitesimal body when t 0.  

To simplify the equations of motion of the variable mass, we use 

the space-time transformation of Mishcherskii [10] which preserve 

the dimension of the space and time 
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q q kx , y ,dt d , 1

mq q qr , r , r where .1 2 2 3 3
m0

           

      
                                           (6) 

 

After using equations (5) and (6) in equation (3) and taking 

q 1/ 2, 1,k 0,   the equations of motion (3) become 

 

w
2 n ,


    


 

 

w
2 n .


    


                                                                              (7) 

 

Where, 
3
2

2 2n 2 2 31 2 2w ( )( ) ,
32 8 1 2 3 2
2

 
              

 
 

 

 

2 2 2( ) ( ) , i 1,2,3.i ii
        

3. Liberation points 

The libration points with variable mass m are obtained from the 

solution of the equations: 

w 0, w 0,    

i.e. 

 

   

   

1 1 2 2
2 3 3

1 22 3/21n 0,
4 33 3 2 2

3 5
3 2

        
                         

 
 

 

 

 

   

2 21
2 3 3

1 22 3/21n 0
4 33 3 2 2

3 5
3 2

   
  

                   
 
 

.                      (8) 

 

If we take 01   or 1   in equations (8), we will obtain the 

equations of Md Chand Asique [8]. 

For 01  , we determine the positions of libration points numeri-

cally for different values of ,   and1   . We have used the value of 

0.019   throughout the paper. We have determined the locations 

of the libration points for 0 1,  0 1 and1       in the plane of 

motion of the primaries i.e. in plane (Tables 1 to 5).  

 

 

Table 1: Equilibrium Points on plane  when 0.2, 0.019, , 1 , , 0.01, 0.01, 0.01.1 2 1 3 3 2 2                   

1  Location of non-collinear libration points  ,0 0   

0.2 

(−𝟎. 𝟐𝟖𝟒𝟒𝟓𝟒𝟕𝟒𝟕𝟓𝟑𝟓𝟒𝟖𝟔𝟏, 𝟎. 𝟒𝟖𝟕𝟑𝟗𝟑𝟐𝟔𝟏𝟏𝟒𝟔𝟓𝟖𝟕𝟏), (−𝟎. 𝟐𝟖𝟒𝟒𝟒𝟏𝟗𝟒𝟓𝟎𝟔𝟖𝟔𝟗𝟒𝟓, 𝟎. 𝟒𝟖𝟕𝟑𝟗𝟑𝟗𝟔𝟑𝟎𝟑𝟑𝟎𝟒𝟑𝟖𝟑),  

 (0.2956270600811379, 0.06192302747859898), 

(0.29556491099304, 0.061977680344770456), 

(−𝟎. 𝟏𝟑𝟓𝟎𝟑𝟒𝟕𝟓𝟖𝟕𝟔𝟗𝟖𝟕𝟏𝟐𝟓, −𝟎. 𝟐𝟐𝟓𝟏𝟕𝟑𝟔𝟎𝟔𝟕𝟔𝟏𝟕𝟔𝟎𝟑𝟐), 

(0.08910163326559607, −0.1947940210736529), 

(0.08858893531830736, −0.19497567534431656) 

0.4 

(−𝟎. 𝟐𝟖𝟑𝟔𝟒𝟕𝟏𝟎𝟒𝟎𝟒𝟏𝟒𝟑𝟔𝟎𝟔, 𝟎. 𝟒𝟖𝟓𝟗𝟗𝟔𝟖𝟖𝟕𝟏𝟓𝟏𝟖𝟎𝟖𝟒), (−𝟎. 𝟐𝟖𝟑𝟔𝟑𝟒𝟒𝟖𝟎𝟐𝟖𝟎𝟖𝟕𝟗𝟐𝟑, 𝟎. 𝟒𝟖𝟓𝟗𝟗𝟕𝟓𝟕𝟖𝟗𝟎𝟎𝟒𝟓𝟏𝟐𝟓), 

(0.30123094286068486, 0.05695753303967788), (0.3012508302020045, 0.05692590645739479), 

(−𝟎. 𝟏𝟑𝟒𝟗𝟗𝟕𝟑𝟕𝟏𝟐𝟎𝟓𝟎𝟏𝟐𝟒𝟔, −𝟎. 𝟐𝟐𝟓𝟒𝟐𝟕𝟗𝟔𝟖𝟐𝟐𝟑𝟓𝟏𝟗𝟑𝟖), (0.08845001759995275, −0.19323832426762022), 

(0.08794414458087421, −0.1934191582094033),  

0.6 

(−𝟎. 𝟐𝟖𝟐𝟑𝟑𝟕𝟑𝟗𝟑𝟕𝟗𝟖𝟔𝟓𝟔𝟒𝟕, 𝟎. 𝟒𝟖𝟑𝟕𝟑𝟐𝟔𝟗𝟑𝟏𝟏𝟓𝟑𝟖𝟗𝟏), (−𝟎. 𝟐𝟖𝟐𝟑𝟐𝟓𝟎𝟓𝟕𝟑𝟏𝟒𝟏𝟔𝟎𝟕𝟒, 𝟎. 𝟒𝟖𝟑𝟕𝟑𝟑𝟑𝟔𝟖𝟔𝟓𝟏𝟖𝟐𝟑𝟕𝟔), 

(0.3057039503964182, 0.051256365620824855), (0.30570722387631194, 0.05123743721217642), 

(−𝟎. 𝟏𝟑𝟒𝟗𝟏𝟐𝟐𝟑𝟖𝟓𝟐𝟑𝟏𝟏𝟕𝟑𝟕, −𝟎. 𝟐𝟐𝟓𝟖𝟐𝟖𝟎𝟎𝟗𝟏𝟒𝟕𝟔𝟑𝟐𝟎𝟕), 

(0.08739603014770556, −0.19071472374688964), (0.08690129163490407, −0.19089415995869155), 

0.8 

(−𝟎. 𝟐𝟖𝟎𝟓𝟕𝟓𝟖𝟕𝟕𝟒𝟖𝟐𝟑𝟕𝟕𝟓𝟔, 𝟎. 𝟒𝟖𝟎𝟔𝟖𝟕𝟖𝟕𝟑𝟕𝟎𝟏𝟏𝟎𝟎𝟐), (−𝟎. 𝟐𝟖𝟎𝟓𝟔𝟑𝟗𝟐𝟐𝟒𝟑𝟏𝟒𝟐𝟖𝟏, 𝟎. 𝟒𝟖𝟎𝟔𝟖𝟖𝟓𝟐𝟕𝟖𝟕𝟐𝟗𝟐𝟒𝟗𝟑), 

 (0.30870711000440193, 0.0455491002517442), 

(0.3087036897405585, 0.045537506676822055), 

(−𝟎. 𝟏𝟑𝟒𝟕𝟓𝟒𝟒𝟐𝟎𝟑𝟏𝟗𝟖𝟔𝟖𝟏𝟕, −𝟎. 𝟐𝟐𝟔𝟑𝟑𝟓𝟑𝟏𝟏𝟒𝟑𝟒𝟎𝟐𝟑𝟔𝟑), 

(0.08598360773051841, −0.18731918845451875), 

(0.08550395792282305, −0.18749661146118424) 

1 

(−𝟎. 𝟐𝟕𝟖𝟒𝟐𝟓𝟐𝟗𝟕𝟔𝟏𝟗𝟕𝟖𝟒𝟐𝟒, 𝟎. 𝟒𝟕𝟔𝟗𝟕𝟏𝟐𝟒𝟓𝟗𝟔𝟔𝟔𝟔𝟎𝟑𝟓), (−𝟎. 𝟐𝟕𝟖𝟒𝟏𝟑𝟖𝟎𝟎𝟓𝟏𝟑𝟑𝟐𝟔, 𝟎. 𝟒𝟕𝟔𝟗𝟕𝟏𝟖𝟕𝟒𝟕𝟑𝟏𝟏𝟖𝟗𝟖), 

(0.31045438312395973, 0.04011885700185765), (0.3104482254377997, 0.04011185335496099), 

(−𝟎. 𝟏𝟑𝟒𝟓𝟎𝟓𝟔𝟎𝟑𝟏𝟒𝟔𝟎𝟏𝟔𝟓𝟔, −𝟎. 𝟐𝟐𝟔𝟖𝟗𝟔𝟖𝟔𝟑𝟒𝟐𝟒𝟓𝟔𝟔𝟐𝟖), (0.08426697766961469, −0.1831720152674377), 

(0.08380588756172369, −0.1833467703805845) 

 

Table 2: Equilibrium Points on Plane  when 0.2, 0.019, , 1 , , 0.01, 0.01, 0.001.1 2 1 3 3 2 2                   

1  Location of non-collinear libration points  ,0 0   

0.2 

(−𝟎. 𝟐𝟕𝟕𝟑𝟕𝟒𝟐𝟖𝟏𝟗𝟔𝟔𝟕𝟏𝟏𝟏𝟔, 𝟎. 𝟒𝟕𝟓𝟑𝟏𝟒𝟏𝟑𝟕𝟓𝟎𝟒𝟐𝟐𝟐𝟔), (−𝟎. 𝟐𝟕𝟕𝟑𝟔𝟎𝟖𝟖𝟎𝟑𝟗𝟗𝟏𝟎𝟑𝟒𝟓, 𝟎. 𝟒𝟕𝟓𝟑𝟏𝟒𝟑𝟎𝟕𝟕𝟐𝟐𝟑𝟎𝟎𝟓𝟒), 

(0.30816532401901964, 0.05085949009441141), (0.3081658127439091, 0.050842092067477716), 

(−𝟎. 𝟏𝟑𝟓𝟏𝟐𝟕𝟓𝟕𝟕𝟑𝟐𝟗𝟑𝟐𝟕𝟒𝟑, −𝟎. 𝟐𝟐𝟓𝟗𝟖𝟒𝟖𝟕𝟖𝟐𝟑𝟏𝟏𝟓𝟑𝟐), (0.08626922845525134, −0.19074821913640916), 

( 0.08574318848459206, −0.19093498831074399) 

0.4 

(−𝟎. 𝟐𝟕𝟔𝟓𝟏𝟒𝟓𝟐𝟗𝟎𝟓𝟕𝟖𝟎𝟔, 𝟎. 𝟒𝟕𝟑𝟖𝟐𝟕𝟗𝟖𝟒𝟏𝟗𝟐𝟐𝟒𝟗𝟑), (−𝟎. 𝟐𝟕𝟔𝟓𝟎𝟏𝟑𝟏𝟓𝟓𝟕𝟗𝟒𝟏𝟗𝟖𝟕, 𝟎. 𝟒𝟕𝟑𝟖𝟐𝟖𝟏𝟒𝟔𝟑𝟔𝟔𝟗𝟒𝟐𝟕𝟔), 

(0.30951013516759607, 0.04823866135883527), (0.309507637396958, 0.04822463529653216),  

(−𝟎. 𝟏𝟑𝟓𝟎𝟓𝟐𝟓𝟑𝟔𝟗𝟕𝟗𝟗𝟗𝟕𝟔, −𝟎. 𝟐𝟐𝟔𝟐𝟐𝟑𝟕𝟏𝟒𝟑𝟖𝟕𝟕𝟓𝟑𝟗𝟑), (0.08560814447201556, −0.1891519510249989), 

(0.08508947825670105, −0.18933789092736564) 

0.6 

(−𝟎. 𝟐𝟕𝟓𝟏𝟐𝟎𝟐𝟑𝟒𝟑𝟓𝟏𝟒𝟒𝟏𝟓𝟔, 𝟎. 𝟒𝟕𝟏𝟒𝟏𝟖𝟎𝟕𝟗𝟓𝟕𝟑𝟏𝟖𝟏𝟗), 

 (−𝟎. 𝟐𝟕𝟓𝟏𝟎𝟕𝟑𝟐𝟑𝟏𝟗𝟔𝟕𝟖𝟔𝟔, 𝟎. 𝟒𝟕𝟏𝟒𝟏𝟖𝟐𝟐𝟗𝟎𝟐𝟏𝟒𝟔𝟗𝟐𝟒), 

(0.31098755644015535, 0.044535802991353214), (0.31098235305115085, 0.0445255691047567), 

(−𝟎. 𝟏𝟑𝟒𝟗𝟏𝟏𝟎𝟒𝟎𝟏𝟓𝟎𝟏𝟒𝟕𝟗𝟑, −𝟎. 𝟐𝟐𝟔𝟓𝟗𝟏𝟗𝟑𝟕𝟔𝟕𝟑𝟕𝟗𝟎𝟖𝟓), (0.08453951118106617, −0.1865637218612278), 

(0.08403286380478125, −0.18674824135078452) 

0.8 

(−𝟎. 𝟐𝟕𝟑𝟐𝟒𝟒𝟕𝟔𝟗𝟎𝟒𝟖𝟖𝟎𝟗𝟓, 𝟎. 𝟒𝟔𝟖𝟏𝟕𝟕𝟎𝟎𝟑𝟏𝟕𝟗𝟑𝟐𝟒𝟗), (−𝟎. 𝟐𝟕𝟑𝟐𝟑𝟐𝟐𝟓𝟗𝟐𝟒𝟒𝟕𝟓𝟔𝟕, 𝟎. 𝟒𝟔𝟖𝟏𝟕𝟕𝟏𝟑𝟔𝟏𝟐𝟔𝟑𝟏𝟕𝟑),  

(0.3121152226703554, 0.04030988922977912), (0.31210831853721316, 0.04030299467544001), 

(−𝟎. 𝟏𝟑𝟒𝟔𝟖𝟕𝟗𝟕𝟗𝟖𝟑𝟎𝟖𝟐𝟗𝟖𝟑, −𝟎. 𝟐𝟐𝟕𝟎𝟒𝟔𝟒𝟕𝟒𝟕𝟓𝟓𝟑𝟕𝟑𝟏𝟓), (0.0831087434364661, −0.18308356161055264), 

(0.08261835953788292, −0.18326602140761192) 
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1 

(−𝟎. 𝟐𝟕𝟎𝟗𝟓𝟒𝟕𝟐𝟖𝟔𝟔𝟕𝟔𝟎𝟗𝟑, 𝟎. 𝟒𝟔𝟒𝟐𝟐𝟎𝟐𝟑𝟗𝟐𝟑𝟖𝟖𝟗𝟐𝟗), (−𝟎. 𝟐𝟕𝟎𝟗𝟒𝟐𝟕𝟎𝟎𝟔𝟑𝟕𝟑𝟐𝟗𝟔𝟕, 𝟎. 𝟒𝟔𝟒𝟐𝟐𝟎𝟑𝟓𝟐𝟗𝟖𝟗𝟓𝟕𝟓𝟎𝟒), 

(0.3126851670827154, 0.0359679666676881), (0.31267749177692405, 0.035963718032039196), 

(−𝟎. 𝟏𝟑𝟒𝟑𝟕𝟕𝟎𝟗𝟗𝟎𝟖𝟖𝟓𝟐𝟕𝟔, −𝟎. 𝟐𝟐𝟕𝟓𝟑𝟒𝟐𝟑𝟓𝟔𝟐𝟕𝟐𝟐𝟑𝟎𝟖), (0.08137175743303554, −0.17883671147586827), 

(0.08090133741343, −0.17901642195007444) 

 

Table 3: Equilibrium Points on Plane  When 0.9, 0.019, , 1 , , 0.01, 0.01, 0.01.1 2 1 3 3 2 2                   

1  Location of non-collinear libration points  ,0 0   

0.2 

(−𝟎. 𝟓𝟖𝟗𝟑𝟏𝟗𝟏𝟓𝟓𝟑𝟐𝟓𝟓𝟕𝟖𝟒, 𝟏. 𝟎𝟎𝟗𝟖𝟑𝟎𝟗𝟏𝟗𝟑𝟖𝟐𝟗𝟖𝟔𝟒), (−𝟎. 𝟓𝟖𝟗𝟐𝟗𝟏𝟐𝟒𝟎𝟔𝟖𝟓𝟖𝟑𝟒𝟕, 𝟏. 𝟎𝟎𝟗𝟖𝟑𝟏𝟒𝟕𝟏𝟎𝟏𝟖𝟒𝟑𝟒𝟐), 

(0.6543416427541445, 0.10557889744898512), (0.6543402761354244, 0.10554493133265302), 

(−𝟎. 𝟐𝟖𝟔𝟓𝟐𝟐𝟖𝟎𝟗𝟐𝟐𝟏𝟐𝟎𝟔𝟏𝟓, −𝟎. 𝟒𝟕𝟗𝟓𝟓𝟎𝟐𝟕𝟑𝟑𝟐𝟑𝟒𝟒𝟏𝟓), (0.18276459531243183, −0.4032321451552517), 

(0.1816646386312163, −0.40362544458021715) 

0.4 

(−𝟎. 𝟓𝟖𝟕𝟓𝟒𝟑𝟖𝟎𝟔𝟐𝟖𝟏𝟎𝟖𝟗, 𝟏. 𝟎𝟎𝟔𝟕𝟔𝟐𝟏𝟏𝟎𝟒𝟑𝟖𝟎𝟖𝟕), (−𝟎. 𝟓𝟖𝟕𝟓𝟏𝟔𝟐𝟕𝟗𝟓𝟖𝟒𝟑𝟔𝟖𝟏, 𝟏. 𝟎𝟎𝟔𝟕𝟔𝟐𝟔𝟒𝟓𝟏𝟖𝟗𝟕𝟗𝟏𝟑), 

(0.6568815071071648, 0.10031397498284132), (0.656874832530823, 0.1002863412924406), 

(−𝟎. 𝟐𝟖𝟔𝟑𝟔𝟎𝟑𝟓𝟑𝟏𝟗𝟐𝟎𝟔𝟑𝟏𝟔, −𝟎. 𝟒𝟖𝟎𝟎𝟒𝟏𝟐𝟓𝟓𝟑𝟗𝟓𝟓𝟎𝟒𝟕), 

(0.18138996818041034, −0.399912214358862), 

(0.18030528716801575, −0.4003037284170671) 

0.6 

(−𝟎. 𝟓𝟖𝟒𝟔𝟔𝟑𝟗𝟓𝟐𝟖𝟗𝟑𝟕𝟎𝟑𝟐, 𝟏. 𝟎𝟎𝟏𝟕𝟖𝟒𝟓𝟗𝟑𝟖𝟖𝟗𝟐𝟖𝟖𝟔), (−𝟎. 𝟓𝟖𝟒𝟔𝟑𝟕𝟎𝟓𝟎𝟎𝟎𝟐𝟔𝟏𝟕, 𝟏. 𝟎𝟎𝟏𝟕𝟖𝟓𝟏𝟎𝟏𝟖𝟕𝟔𝟔𝟐𝟓𝟑), 

(0.6596970356669626, 0.09281654710236555), (0.6596854314302416, 0.09279619898446437), 

(−𝟎. 𝟐𝟖𝟔𝟎𝟓𝟕𝟑𝟖𝟏𝟒𝟏𝟏𝟒𝟐𝟒𝟖𝟒, −𝟎. 𝟒𝟖𝟎𝟕𝟗𝟕𝟖𝟎𝟖𝟎𝟔𝟎𝟕𝟔𝟓𝟑𝟑), (0.17916686123637268, −0.3945273061997747), 

(0.1781070772342044, −0.394915770249845) 

0.8 

(−𝟎. 𝟓𝟖𝟎𝟕𝟖𝟖𝟗𝟒𝟏𝟔𝟎𝟏𝟎𝟗𝟒𝟔, 𝟎. 𝟗𝟗𝟓𝟎𝟖𝟖𝟎𝟑𝟔𝟕𝟏𝟗𝟐𝟒𝟖𝟖), (−𝟎. 𝟓𝟖𝟎𝟕𝟔𝟐𝟖𝟔𝟕𝟑𝟏𝟒𝟕𝟎𝟑𝟕, 𝟎. 𝟗𝟗𝟓𝟎𝟖𝟖𝟓𝟎𝟗𝟗𝟎𝟑𝟑𝟏𝟏𝟑), 

(0.6618492348608215, 0.0841966822217591), (0.6618344778793793, 0.0841828810016387), 

(−𝟎. 𝟐𝟖𝟓𝟓𝟖𝟒𝟔𝟔𝟑𝟎𝟒𝟒𝟖𝟔𝟏𝟖𝟓, −𝟎. 𝟒𝟖𝟏𝟕𝟑𝟏𝟒𝟎𝟔𝟖𝟏𝟒𝟖𝟎𝟔𝟗), (0.17618839860357202, −0.3872830529399044), 

(0.17516230299794355, −0.387667109442528) 

1 

(−𝟎. 𝟓𝟕𝟔𝟎𝟓𝟓𝟑𝟗𝟑𝟎𝟒𝟐𝟐𝟕𝟐𝟖, 𝟎. 𝟗𝟖𝟔𝟗𝟎𝟗𝟑𝟒𝟒𝟓𝟓𝟓𝟐𝟓𝟒𝟒), (−𝟎. 𝟓𝟕𝟔𝟎𝟑𝟎𝟑𝟏𝟒𝟎𝟗𝟖𝟕𝟓𝟎𝟒, 𝟎. 𝟗𝟖𝟔𝟗𝟎𝟗𝟕𝟕𝟕𝟎𝟗𝟐𝟒𝟔𝟏𝟒), 

(0.6629075476206654, 0.07528640928944615), (0.6628913679915919, 0.07527787545257904), 

(−𝟎. 𝟐𝟖𝟒𝟗𝟑𝟎𝟖𝟖𝟓𝟕𝟐𝟖𝟑𝟑𝟎𝟏𝟒, −𝟎. 𝟒𝟖𝟐𝟕𝟑𝟑𝟓𝟒𝟏𝟎𝟗𝟗𝟐𝟑𝟓𝟑𝟑), (0.17256943660416726, −0.3784372676094282), 

(0.1715846956777738, −0.37881546313938497) 

 

Table 4: Equilibrium Points on Plane  When 0.9, 0.019, , 1 , , 0.01, 0.01, 0.001.1 2 1 3 3 2 2                   

1  Location of non-collinear libration points  ,0 0   

0.2 

(−𝟎. 𝟓𝟖𝟔𝟕𝟏𝟒𝟕𝟗𝟑𝟎𝟓𝟒𝟖𝟗𝟗𝟓, 𝟏. 𝟎𝟎𝟓𝟒𝟏𝟓𝟐𝟏𝟖𝟗𝟐𝟐𝟓𝟗𝟏𝟔), (−𝟎. 𝟓𝟖𝟔𝟔𝟖𝟔𝟐𝟓𝟕𝟐𝟗𝟎𝟎𝟖𝟗𝟗, 𝟏. 𝟎𝟎𝟓𝟒𝟏𝟓𝟒𝟑𝟔𝟒𝟎𝟑𝟒𝟔𝟔𝟗), 

(0.6551354551727054, 0.10603336480157897), (0.6551337739982154, 0.1059991438760604), 

(0.18234640768312535, −0.40358207835360954), (0.18122926468225514, −0.40397912735471814), 

(−𝟎. 𝟐𝟖𝟔𝟔𝟒𝟏𝟕𝟑𝟓𝟕𝟗𝟖𝟏𝟓𝟖𝟔𝟔, −𝟎. 𝟒𝟕𝟗𝟓𝟕𝟕𝟔𝟕𝟔𝟔𝟑𝟑𝟑𝟖𝟏𝟖𝟔) 

0.4 

(−𝟎. 𝟓𝟖𝟒𝟖𝟖𝟎𝟐𝟒𝟖𝟑𝟒𝟖𝟎𝟔𝟔𝟏, 𝟏. 𝟎𝟎𝟐𝟐𝟒𝟒𝟏𝟗𝟖𝟏𝟎𝟔𝟔𝟑𝟕𝟓), (−𝟎. 𝟓𝟖𝟒𝟖𝟓𝟐𝟏𝟏𝟐𝟒𝟐𝟏𝟐𝟎𝟒𝟕, 𝟏. 𝟎𝟎𝟐𝟐𝟒𝟒𝟑𝟗𝟖𝟔𝟕𝟎𝟓𝟑𝟓𝟒), 

(0.6576809166299544, 0.10070459997768906), (0.6576739111674842, 0.10067677957824271), 

(0.1809446848987448, −0.4001934077937596), (0.17984327263298627, −0.400588693436064), 

(−𝟎. 𝟐𝟖𝟔𝟒𝟕𝟒𝟕𝟐𝟓𝟕𝟗𝟕𝟔𝟓𝟓𝟏𝟓, −𝟎. 𝟒𝟖𝟎𝟎𝟕𝟕𝟗𝟗𝟎𝟗𝟗𝟓𝟔𝟔𝟗𝟗) 

0.6 

(−𝟎. 𝟓𝟖𝟏𝟗𝟎𝟒𝟖𝟏𝟖𝟗𝟕𝟕𝟕𝟗𝟔𝟑, 𝟎. 𝟗𝟗𝟕𝟏𝟎𝟏𝟔𝟖𝟐𝟖𝟗𝟔𝟎𝟐𝟓𝟔), (−𝟎. 𝟓𝟖𝟏𝟖𝟕𝟕𝟑𝟐𝟓𝟕𝟒𝟕𝟖𝟗𝟐𝟗, 𝟎. 𝟗𝟗𝟕𝟏𝟎𝟏𝟖𝟓𝟔𝟕𝟏𝟎𝟖𝟎𝟕𝟐), 

(0.6604935559125026, 0.09311774879779251), (0.6604816133123983, 0.09309729819691485), 

(−𝟎. 𝟐𝟖𝟔𝟏𝟔𝟑𝟑𝟕𝟐𝟑𝟓𝟗𝟔𝟏𝟐𝟔𝟒, −𝟎. 𝟒𝟖𝟎𝟖𝟒𝟕𝟖𝟒𝟐𝟎𝟓𝟐𝟐𝟏𝟓𝟖), (0.1786788544500434, −0.39469898977904483), 

(0.17760307969736366, −0.3950912540956996) 

0.8 

(−𝟎. 𝟓𝟕𝟕𝟗𝟎𝟐𝟎𝟏𝟒𝟒𝟏𝟔𝟐𝟐𝟔𝟓, 𝟎. 𝟗𝟗𝟎𝟏𝟖𝟒𝟓𝟔𝟕𝟐𝟗𝟕𝟎𝟖𝟗𝟗), (−𝟎. 𝟓𝟕𝟕𝟖𝟕𝟓𝟑𝟕𝟒𝟒𝟒𝟎𝟕𝟖𝟐𝟐, 𝟎. 𝟗𝟗𝟎𝟏𝟖𝟒𝟕𝟎𝟔𝟒𝟔𝟑𝟓𝟐𝟑𝟑), 

(0.6626266774066116, 0.08439977435583709), (0.6626115929440162, 0.0843859477878872), 

(−𝟎. 𝟐𝟖𝟓𝟔𝟕𝟖𝟏𝟎𝟖𝟐𝟑𝟖𝟏𝟑𝟑𝟒𝟒, −𝟎. 𝟒𝟖𝟏𝟕𝟗𝟓𝟕𝟎𝟐𝟒𝟒𝟒𝟗𝟏𝟕𝟏𝟓), (0.17564525508145484, −0.38731125901657965), 

(0.1746041664248091, −0.3876991404576824) 

1 

(−𝟎. 𝟓𝟕𝟑𝟎𝟏𝟑𝟒𝟖𝟒𝟖𝟖𝟗𝟔𝟎𝟗𝟐, 𝟎. 𝟗𝟖𝟏𝟕𝟑𝟖𝟒𝟖𝟒𝟓𝟓𝟏𝟖𝟑𝟐𝟏), (−𝟎. 𝟓𝟕𝟐𝟗𝟖𝟕𝟖𝟔𝟗𝟐𝟎𝟖𝟖𝟖𝟒𝟕, 𝟎. 𝟗𝟖𝟏𝟕𝟑𝟖𝟓𝟖𝟑𝟒𝟔𝟖𝟕𝟔𝟒𝟓), 

(0.6636482836538359, 0.0753959729678519), (0.6636318037586589, 0.07538747280245163), 

(−𝟎. 𝟐𝟖𝟓𝟎𝟎𝟖𝟐𝟕𝟐𝟔𝟐𝟑𝟓𝟖𝟐𝟒𝟕, −𝟎. 𝟒𝟖𝟐𝟖𝟎𝟗𝟖𝟗𝟕𝟗𝟖𝟏𝟏𝟏𝟓𝟔), (0.17196249382009984, −0.3782961989988564), 

(0.1709639738830179, −0.3786782276598948) 

 

Table 5: Equilibrium Points on Plane  when 1, 0, 0.019, , 1 , , 0.01, 0.01, 0.001.1 1 2 1 3 3 2 2                    

Location of non-collinear libration points  ,0 0   

(−𝟎. 𝟔𝟏𝟗𝟎𝟓𝟑𝟖𝟐𝟏𝟑𝟗𝟑𝟐𝟗𝟓𝟕, 𝟏. 𝟎𝟔𝟎𝟖𝟒𝟐𝟓𝟕𝟒𝟒𝟖𝟐𝟑𝟕𝟎𝟔), (−𝟎. 𝟔𝟏𝟗𝟎𝟐𝟑𝟓𝟗𝟓𝟔𝟒𝟐𝟎𝟎𝟑𝟗, 𝟏. 𝟎𝟔𝟎𝟖𝟒𝟐𝟖𝟎𝟓𝟑𝟒𝟏𝟕𝟑𝟖𝟓), 

(0.6895070565950088, 0.11376132383059608), (0.689507793369561, 0.11372253745325724), 

(0.19269031313367624, −0.42658833480963965), (0.1915071141652341, −0.4270074972886581), 

(−𝟎. 𝟑𝟎𝟐𝟐𝟎𝟏𝟐𝟔𝟖𝟔𝟗𝟕𝟕𝟖𝟐𝟕𝟒, −𝟎. 𝟓𝟎𝟓𝟑𝟒𝟐𝟒𝟗𝟒𝟕𝟕𝟎𝟔𝟒𝟒𝟐) 

 

4. Stability of the liberation points 

The linear stability of the libration points has been determined by 

giving the displacement to ( , )0 0  as 

 

u0   , v0  ,  u,v 1                                                    (9) 

 

Where ( , )0 0  is the libration point for a fixed value of time t? 

From the equations (5) and (9), we obtain the variational equations 

as 

u 2nv (w ) u (w ) v,0 0     

 

v 2n u (w ) u (w ) v,0 0                                                         (10) 

 

Where the subscript ‘0’ in equations (10) represents that the values 

are to be found at the libration point ( , )0 0  under consideration. 

We have 
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 

 

   

2
 2 2

2 52
22 3/2 1 11w n 3

5 24 2
 51 3 32 2

7 52 2 3

33/2 31 2 2 ,
3 3 5 321 2 2 3

   


                              


    
     
 
 

 

 

   

 

3/2 1 1w w 3 (
5

1

( ) 5 ( )2 2 2 2 2 2
5 7

2 2

( )3 3 3
),

5
3

    
    

          


    


 

 

 

   

22
2 21

2 5 5
1 22 3/21w n 3

24 2
5 3 32 2

7 52 2 3

33/2 31 2 2 ,
3 3 5 321 2 2 3

    
                       

  

   
     
 
 

         (11) 

 

If we take 01  , the system (10) reduced to a system with con-

stant mass. For 01  , the coordinates of the three primaries vary 

with time t and their distances to the libration point ( , )0 0  de-

crease with time. Therefore, we cannot determine the linear stabil-

ity from ordinary method. So, we use the space-time inverse trans-

formations of Meshcherskii [10] i.e. 1/2x    , 1/2y   
 
. The 

positions of the primaries are fixed so that their distances to the 

libration points are invariable. 

In phase-space, equations (10) may be written as 

 

u u1 , v v1 , 

 

u 2n v (w ) u (w ) v,1 1 0 0     

 

v 2n u (w ) u (w ) v,1 1 0 0                                                      (12) 

 

By using Meshcherskii [10] inverse transformations, and putting 

 

1/2x u   , 1/2y v   , 

 

1/2u u1
   , 1/2v v1

   , 

 

In the matrix the system (12) can be written as follows: 

 

dx
0 1 0

dt 2
xdy

0 0 1
ydt 2

 
du u

(w ) (w ) 2n0 0
dt 2 v

dv
(w ) (w ) 2n0 0

2dt

    
   
           
                                   

  

                            (13) 

 

As the positions of the primaries are fixed and their distances to 

the libration points are invariable, the stability of (13) and (5) is 

consistent with each other. In fact, the original null solution when 

01  has been disturbed into a non-trivial solution. Thus, the 

linear stability of this solution depends on the existence of stable 

region of the libration point, which in turn depends on the bound-

edness of the solution of linear and homogenous system of equa-

tions (13). We have determined the linear stability of the libration 

points. For this, we find the characteristic roots of the coefficient 

matrix of equation (13) numerically. 

The characteristic equation of the coefficient matrix is 

 

3 14 3 2 2 32 P P
2 2

1 14 2P Q 0,
16 4

   
               

   

 
     

 

                                  (14) 

 

Where 

 

2P 4n (w ) (w ) ,0 0     

 

2Q (w ) (w ) (w ) ,0 0 0
     

 

Where values of w , w and w    are given by equations (11). 

The characteristic roots of the equation (14) have been calculated 

at various libration points in the range 

0 1,  0 1,  0.019.1       We have observed that there always 

exist seven liberation points in which three are asymptotically 

stable and four are unstable because we got at least one real char-

acteristic root at each liberation points. 

5. Conclusion 

We have studied here the restricted four body problem with oblate 

primary and the infinitesimal mass is taken as variable. Bhatnagar 

[3] has taken the four body problem instead of the restricted three 

body problem and in these four bodies he has taken the three bod-

ies (primaries) as spherical in shape which forms an equilateral 

triangular configuration. But in our problem we have taken oblate 

primary so we got an isosceles triangular configuration for the 

primaries (Eqn.-2). We have determined the equations of motion 

which are different from the equations of motions of Bhatnagar [3] 

by oblateness factor and variable mass parameters. Also we have 

determined the equilibrium points and found seven liberation 

points which are also different from Md Chand Asique et al. [8] 

because they have found eight liberation points. And we observed 

that out of seven liberation points, three are asymptotically stable 

(dark black in the tables) and four are unstable because we got at 

least one real characteristic root at each liberation points. 

Our model is quite realistic and it has wider applications in this 

space age because most of the natural and artificial bodies moving 

in space are oblate bodies and losing their masses.  
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