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Abstract 
 

We study the effect of triaxiality and radiation of the bigger primary on the positions and stability of the triangular points in the relativ-

istic R3BP. It is found that the locations of the triangular points are affected by the relativistic terms apart the radiation force and the 

triaxiality of the bigger primary. It is also seen that for these points, the range of stability region increases or decreases according as 

without which depends upon the relativistic terms, the radiation and triaxiality coefficient is greater than or less than zero. A practical 

application of this model could be the study of the motion of a dust grain particle near the Sun-Earth system. A practical application of 

this model could be the study of the motion of a dust grain particle near the Sun-Earth system. 

 
Keywords: Celestial Mechanics; Radiation; Triaxiality; Relativity; R3BP. 

 

1. Introduction 

The circular restricted three-body problem (CR3BP) describes the 

dynamics of a body having infinitesimal mass and moving in the 

gravitational field of two massive bodies called primaries, which 

revolve around their common center of mass in circular orbits on 

account of their mutual attraction. It is originally formulated due 

to the approximately circular motion of the planets around the 

Sun, and the small masses of asteroids and the satellites of planets 

compared to the planets' masses. 

The infinitesimal mass can be at rest in a rotating coordinate 

frame, at five equilibrium points, where the gravitational and cen-

trifugal forces just balance each other. Three of them are the col-

linear points L ,L ,L1 2 3  
lying on the line connecting the primaries, 

while the other two are the triangular points L ,L ,4 5 forming equi-

lateral triangles with the primaries. The latters are linearly stable 

for the mass ratio   of the primaries less than 0.03852... (Sze-

behely [1]). Their stability occurs although the potential energy 

has a maximum rather than a minimum at L4 and L5 . The stabil-

ity is actually achieved through the influence of the Coriolis force, 

because the coordinate system is rotated (Wintner [2]; Contopou-

los [3]). The bodies in the R3BP are strictly spherical in shape, but 

in nature, celestial bodies are not perfect spheres. They are either 

oblate or triaxial. The lack of sphericity or the oblateness of the 

planets causes large perturbations from a two-body orbit. The 

motions of artificial Earth satellites are examples of this. This 

motivates many investigators (SubbaRao and Sharma [4]; Ab-

dulRaheem and Singh [5]; Sharma [6]; Idrisi et al. [7]). The effect 

of triaxiality and radiation of the primaries on the existence and 

stability of libration points in the CR3BP was analyzed by e.g El-

Shaboury [8], Sharma et al. [9], [10], Khanna and Bhatnagar [11], 

Singh [12] to study CR3BP with oblateness or triaxiality of the 

bodies. 

In general relativity, even writing down the equations of motion in 

the simplest case N=2 is difficult. Unlike in Newton’s theory, it is 

impossible to express the acceleration by means of the positions 

and velocities, in a way which would be valid within the “Exact” 

theory. Therefore, the approximation method is needed. 

Historically, the equations of motion of the problem of N bodies 

considered as point masses were first obtained by generalizing the 

geodesic principle. By the use of this method, De sitter [13] first 

derived the relativistic equation of N-body problem. Some arith-

metic errors occurred in these equations are reproduced in the 

encyclopedic paper of Kottler [14] and treatises by Chazy [15], 

[16], but were corrected by Eddington and Clark [17]. Brumberg 

[18], [19] studied the problem in more details and collected most 

of the important results of relativistic celestial mechanics. He has 

not only obtained the equations of motion for the general problem 

of the three bodies, but also deduced the equations of motion for 

the restricted problem of three bodies. 

Bhatnagar and Hallan [20] studied the existence and linear stabil-

ity of the triangular points L4,5  in the relativistic R3BP, they con-

cluded that L4,5 are always unstable in the whole range 
1

0
2

    

in contrast to the classical R3BP where they are stable for

0 0  , where   is the mass ratio and 0.03852...0   is the 

Routh’s value. Douskos and Perdios [21] examined the stability of 

the triangular points in the relativistic R3BP and contrary to the 

results of Bhatnagar and Hallan [20], they obtained a region of 

linear stability in the parameter space
17 69

0 0 2486c
      where

0.03852...0   is Routh’s value.  
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In recent times, many perturbing forces, i.e. oblateness and radia-

tion forces of the primaries, Coriolis and centrifugal forces, have 

been included in the study of the relativistic R3BP. 

The locations of libration points in the relativistic R3BP, when 

one or more additional effects are included in the potential due to 

radiation pressure and the oblateness of the primaries, were stud-

ied by Abd El-Salam and Abd El-Bar [22] and Katour et al. [23]. 

The locations of triangular points and their linear stability when 

the bigger primary is radiating in the relativistic R3BP were exam-

ined by Singh and Bello [24]. The locations of triangular points 

and their linear stability in the presence of small perturbation giv-

en to the centrifugal force were also investigated by Singh and 

Bello [25]. 

In all the studies previously mentioned in the relativistic R3BP, no 

work is performed in the direction of linear stability of the triangu-

lar point in the presence of both radiation and triaxiality. Hence, 

the idea of the radiation pressure force together with triaxiality of 

bigger primary raises a curiosity in our mind to study the “stability 

of triangular points in the relativistic R3BP”. 

This paper is organized as follows: In Sect. 2, the equations gov-

erning the motion are presented; Sect. 3 describes the positions of 

triangular points, while their linear stability is analyzed in Sect.4; 

a discussion of these results is given in Sect. 5, finally sect. 6 

summarizes the conclusions and findings of our paper. 

2. Equations of motion 

The pertinent equations of motion of an infinitesimal mass in the 

relativistic R3BP in a barycentric synodic coordinate system  ,   

and dimensionless variables can be written as Brumberg [18] and 

Bhatnagar and Hallan [20]: 

 

 

W d W
2n

dt

W d W
2n

dt
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3 1
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2 32c
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                                                              (3) 
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Where 
1

0
2

    is the ratio of the mass of the smaller primary to 

the total mass of the primaries,
1
 and

2
  are distances of the in-

finitesimal mass from the bigger and smaller primary, respective-

ly;
 

n
 
is the mean motion of the primaries; c is the velocity of 

light.  

We now introduce the triaxiality factors of the bigger primary with 

the help of the parameter 1(i 1,2),i   where
2 2a c

,1 25R


 

2 2b c
.2 25R


   (McCuskey [26]). Here ,1 2   characterize the tri-

axiality of the bigger primary with a,b,c  as lengths of its semi-

axes and R is the dimensional distance between the primaries. The 

radiation factor q1  
is given by F F (1 q )p1 g1 1  such that 

0 (1 q ) 11    Radzievskii [27]
 

For simplicity, putting

q 1 (1 q ) 11 1     where 0 1 q 11    and neglecting second 

and higher powers of (i 1,2)i  and  , and also their products, we 

take the equations of motion as: 

 

W d W
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dt

W d W
2n

dt
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(5)

 
 

Where W is the potential-like function of the relativistic R3BP. As 

Katour et al. [23], we do not include the parameters (i 1,2)i   and 

 in the relativistic part of W since the magnitude of these terms is 

so small due to 2c . 
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And n  is the perturbed mean motion of the primaries and is given 

by 

 

 
3 3 1

n 1 2 1 (1 )1 2 24 32c

 
        

 
                                         (7) 

3. Location of triangular points 

The libration points are obtained from equation (5) after putting 

 

0.    

 

These points are the solutions of the equations 
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Following as Singh and Bello [24], from the system (8) with 0 , 

we have obtained the coordinates of the triangular points  , 
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These points are denoted by L4  and L5 respectively. 

4. Stability of triangular points 

Since the nature of linear stability about the point L5  will be simi-

lar to that about L4 , it will be sufficient to consider here the sta-

bility only near L4 . 
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Similarly, we obtain 

 

W
A B C D1 1 1 1

a , b

 
        

    
 

 

Where, 

 

 
 

 

23 89 47 8
3 3 2

A 1 2 11 124 163c

23 37 9 8
3

(1 ) ,2
16 6

    
      
  
 

   

    


 

 



46 International Journal of Advanced Astronomy 

 

 
 

 

23 15 29 8
9 7 2B 1 2 3 31 124 166c

23 15 7 8
1

(1 3 ) ,2
16 2

     
         

  

   

     
  

 1 2C 4 ,1 22c
    

 
 

 3 1 2
D .1 22c

 
 

  
 

d W
A B C D2 2 2 2

dt a , b

 
        

    
 

 

Where, 

 

 
3

A 1 2 ,2 22c
  

 
 

 1 2B 4 ,2 22c
    

 
 

 1 2C 17 2 2 ,2 24c
    

. 

 

 
3

D 1 2 .2 24c
   

 
 

d W
A B C D3 3 3 3

dt a , b

 
        

    
 

 

Where 

 

 1 2A 6 5 5 ,3 22c
    

 
 

 
3

B 1 2 ,3 22c
   

 
 

 
3

C 1 2 ,3 24c
   

 
 

 23 5 2 2

D .3 24c

   



 
 

The characteristic equation of the variational equations of motion 

corresponding to (5) can be expressed as 

 

9 34 21 3 (2 3)1 22 2c

4 3 2108 216 693 585
27 (1 )

24 8c

  
          

  

      
 

 


 

 

 

 

29 89 99 10
3

(1 ) 1
2 16

0
29 37 47 10

2
16

    


      


   
 


                                   (10) 

 

For
1

0
2c
 and when the bigger primary is non-luminous and non 

triaxial (i.e. 0),1 2     this reduces to its well-known classical 

restricted problem form (see e.g. Szebehely, [1]): 

 

274 2 (1 ) 0.
4

      
 

 

The discriminant of (10) is 

 

54 108 801 333 6934 3 227 61 22 2 24 4c c 2c

891 447 585 18 57 63
27 6 11 2 1 22 24 4 2 22c c

 
              
 
 

 
                
 
        (11) 

 

Its roots are 

 

b2

2

  
 

                                                                              (12) 

 

Where 

 

 
9 3

b 1 3 2 31 22 2c

 
         
   

 

From (11), we have 

 

d 216 324 801 333 6933 2 2 27 61 22 2 2d 4 4c c 2c

891 447 585 1
27 6 0 0, .1 2 24 4 22c

  
             
 
 

                          (13) 

 

From (13), it can be easily seen that   is monotone decreasing in 

1
0, .

2

 
 
 

 

 

But 

 

 
57 63 18

1 01 20 22 2 c
       


                                              (14) 

 

 
23 525 57 3 207

1 01 2 24 16 16 2 4c2

         


 
 

Since   0



 and   1

2




 are of opposite signs, and   is mono-

tone decreasing and continuous, there is one value of   , e.g. c  

in the interval
1

0,
2

 
 
 

 for which   vanishes.  

 

Solving the equation 0  , using (11), we obtain critical value of 

the mass parameter as 
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1 1 17 69 1 5 59

69c 122 18 2 6 9 69486c

1 19 85 2
2

2 18 9 69 27 69

 
       

 

 
     

 

                                  (15) 

 

17 69 1 5 59 1 19 85 2
c 0 1 22 2 6 2 189 69 9 69 27 69486c

   
              

     
 

Where 0.03852...0  is the Routh’s value? 

We consider the following three regions of the values of   sepa-

rately. 

When 0 c , 0   the values of 2 given by (12) are nega-

tive and therefore all the four characteristic roots are distinct pure 

imaginary numbers. Hence, the triangular points are stable. 

When
1

, 0c
2

     
1

, 0c
2

      , the real parts of the char-

acteristic roots are positive. Therefore, the triangular points are 

unstable. 

When , 0c    , the values of 2  given by (12) are the same. 

This induces instability of the triangular points due to the presence 

of secular terms in the solution of linearized equations of motion 

in the vicinity of these points. 

Hence, the stability region is 

 

17 69 1 5 59 1 19 85 2
0 0 1 22 2 6 2 189 69 9 69 27 69486c

   
               

       

(16) 

5. Discussion 

Equations (5) - (6) describe the motion of a third body under the 

influence of relativistic terms and triaxiality and radiation of the 

bigger primary. Equations (9) and (15) give respectively the posi-

tions of triangular points and critical mass parameter. Equation 

(16) describes the region of stability. It can be seen both positions, 

and critical mass depend upon relativistic terms, triaxiality and 

radiation factors. It may be noted here that in this problem, the 

triangular points no longer form equilateral triangles with the pri-

maries as they do in the classical case. Rather, they form scalene 

triangles with the primaries. It can also be seen from (16) that the 

relativistic, radiation and triaxiality terms all reduce the size of 

stability region. 

In the absence of radiation and triaxiality  i.e. 0 ,1 2     the 

positions of triangular points obtained in this study correspond to 

those of Bhatnagar and Hallan [20], Douskos and Perdios [21].  

In the absence of triaxiality  i.e. 01 2    the results of the pre-

sent study are in accordance with those of Singh and Bello [24] 

when the coupling terms 
2c


 neglected in their study. 

In the absence of radiation and triaxiality  i.e. 0 ,1 2     the 

stability results obtained are in agreement with those of Douskos 

and Perdios [21] and disagree with those of Bhatnagar and Hallan 

[20]. 
In the absence of relativistic terms, the results of the present study 

coincide with those of Sharma et al. [10] and with those of Singh 

[12] when the perturbations are absent and the bigger primary is 

triaxial and luminous only. 

6. Conclusion 

By considering the bigger primary as radiating and triaxial rigid 

body in the relativistic R3BP, we have determined the positions of 

triangular points and have examined their linear stability. It is 

found that their positions and stability region are affected by rela-

tivistic terms, radiation and triaxiality of the bigger primary. It is 

also noticed that the expression for A,D,A ,C2 2  in Bhatnagar and 

Hallan [20] differ from the present study when the radiation pres-

sure and triaxiality are absent. Consequently, the characteristic 

equations are also different. This led them (Bhatnagar and Hallan 

[20]) to conclude that triangular points are unstable, contrary to 

Douskos and Perdios [21] and our results. 
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