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Abstract 
 

We continue studying the cosmological models derived from the fractional variational principle applied to the gravitational sector of the 

action functional. Within the frame of these models, the effective cosmological term could arise as a result of the non-zero Hubble pa-

rameter. At the same time, the continuity equation for the matter remains unchanged in its standard form. In this work, we are going to 

obtain some exact solutions for our model originating from the several kinematic assumptions. At that, we find the main cosmography 

parameters of the model and the corresponding equations of state of matter that fills the universe se. First, we proceed from an initially 

given law of evolution of the universe in some standard scenarios. Then, several exact solutions are obtained from the proposed earlier 

evolutionary laws for the effective cosmological term. 
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1. Introduction 

The first direct evidence of the accelerated expansion of our Uni-

verse was provided by SNeIa absolute magnitude versus redshift 

data [1], [2]. Furthermore, according to the recent cosmological 

observations [3] - [7], we should be assured that the present epoch 

of accelerated expansion is a strictly proven fact. After the discov-

ery of the accelerated expansion, many models have been pro-

posed to explain this mysterious behavior of the Universe, both in 

the context of general relativity (GR) and of alternative gravity 

theories. 

First of all, the GR models with rather exotic forms of matter 

called commonly Dark Energy (DE) have been proposed, but none 

of them are fully convincing. There are numerous models availa-

ble in the literature to explain the nature of Dark Energy. The 

simplest and the most natural candidate among them are the cos-

mological constant [8] with equation of state (EoS) parameter 

w 1   . Unfortunately, this model suffers from two serious prob-

lems such as fine-tuning and cosmic coincidence. Later, various 

kinds of DE models were proposed to explain the nature of DE. 

We could mention a few of them such as quintessence [9], phan-

tom [10], tachyon [11], Chaplygin gas [12], Quinton [13], holo-

graphic dark energy [14] and Yang--Mills fields [15], [16]. 

Another approach in an attempt to explain the accelerated expan-

sion could be considered as some modifications of the gravitation-

al theory itself. It is appropriate to mention among these modifica-

tions such as the multidimensional theory, Branford models, 

teleparallel theory, and so forth. Moreover, the variety of modified 

gravity theories derived from f (R) , f (G) , f (R,G)  and F(R,T)  

could be considered as the gravitational alternative for DE (see, 

e.g., [17] - [19] and references therein). 

Recently, a class of phenomenological models based on the con-

cept of fractional calculus of variations, which is called the frac-

tional action cosmology (FAC) has been proposed by El-Nabulsi 

[20]-[23]. Later, we significantly improved and developed these 

models in our works [24] - [26]. Our models are built on the 

Lebesgue-Satieties measure d (x)  generalizing the standard 4-

dimensional measure 4d x  and applying to the gravity action func-

tional. The action in FAC is written as a fractional Riemann-

Satieties integral:  

 

0

t
1 1S [q ] ( ) L(t ,q (t ),q (t ))(t t ) dti i iL

t

           

 

With the integrating function 1g (t ) ( )[t (t t ) ]t
         . 

Meanwhile, the continuity equation in the framework of our ver-

sion of FAC has been retained in its standard form [26]. We have 

shown there that the effective   - term could be treated as a kin-

ematically induced by the Hubble parameter cosmological term. 

As a result, we have found several interesting properties of the 

FAC models which could be applied to the problem of accelerated 

expansion. 

Based on the motivations mentioned above, we would like to 

study the FAC models with the different rates of evolution, and 

with some phenomenological laws for (t)eff  . That is why we 

are going to obtain several exact solutions to the model equations, 

and the corresponding cosmography and EoS parameters. 

2. Basic equations of FAC 

Cosmological models for the modified fractional Einstein-Hilbert 

action with a varying cosmological term   are derived in our 

article [26]. There we consider a variational principle for the grav-

ity action functional of a fractional order,  

 

R2 4S M g g (t) d x,tEH P 2

       
 
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where 2M 8 G
P
    is the reduced Planck mass. Then, we assume 

that the matter content of the universe is minimally coupled to 

gravity, that is the total action of the system can be expressed as 

S S SmEHtotal
    , where the matter action is of the standard 

measure 4S L gd xm    . Applying the fractional variational pro-

cedure in a spatially flat Friedmann-Robertson-Walker metric,  

 

2 2 2 i kds dt a (t) dx dx ,ik    

 

Where a(t)  is a scale factor, one can obtain the following dynam-

ical equations:  

 

(1 )2 13H 3 H t ,
t

                                                              (1) 

 

2(1 ) (1 )(2 )2 12H 3H H t p ,
2t t

                                 (2) 

 

Where H(t) a / a  is the Hubble parameter, and we set 

2M ( ) 1
P
     for the sake of simplicity. After that, one can derive 

the continuity equation as follows  

 

3H( p) 0.                                                                                (3) 

 

The latter expresses the standard energy-momentum conservation 

law for a perfect fluid, exactly as it does in General Relativity. 

It can be readily verified that the continuity equation (3) in the 

case (0,1)  can be derived from Eqs. (1) and (2), only if the 

time-varying cosmological term (t)  satisfies  

 

 d 3(1 ) (2 )1t H 2 H .
2dt tt

        
 

 

The formal integration of this equation yields  

 

H(t)1 1 3(t) t 3(1 ) (2 )t t H(t)dt ,0
t

           
 

                (4) 

 

where 0  is a constant of integration. Substituting Eq. (4) into the 

main equations of our model, (1) and (2), we obtain the following 

set of equations:  

 

2 13H t ,eff
                                                                               (5) 

 

1 (1 )(2 )2 12H 3H H t p ,eff2t t

                                      (6) 

 

Where the effective energy density and pressure are represented 

by  

 

, p p ,eff eff eff eff                                                     (7) 

 

33(1 )(2 ) t H(t)d t.eff 0
                                                 (8) 

 

The last equation means that the effective cosmological term is the 

sum of the cosmological constant 0  and induced cosmological 

term  

 

33(1 )(2 ) t H(t)d t.ind
       

 

It should be noted also that the deceleration parameter is defined 

just as in the standard cosmology,  

2a a H
q 1 ,

2 2a H
                                                                           (9) 

being a kinematic parameter of the model [27]. 

Thus, the set of dynamical equations (5), (6) consists of two inde-

pendent equations, and fully determines the dynamics of our mod-

el. However, to determine three parameters, say H ,   and p  , 

one more condition should be set. For example, an effective EoS 

can play the role of such additional equation. Indeed, if we con-

sider the effective barotropic fluid, then the effective EoS follows 

from Eqs. (5) and (6) in the form  

 

p 2 H 1 2effw 1 1 .eff 23 3(tH) (tH)eff H

   
      
  

                                  (10) 

 

Assuming the matter also obeys a barotropic EoS p wm  , we 

obtain the following equations between the barotropic indexes of 

the effective fluid and matter:  

 

eff

2

1 wp effw 1 ,m
11 t

3H


   

 

                                                         (11) 

 

1effw w (1 w ) t .eff m m 23H

                                                      (12) 

 

Combining equations (5), (6), one can derive the continuity equa-

tion for the effective values of the energy density and pressure as 

follows  

 

33H( p ) 3(1 )(2 )t H,eff eff eff
                                     (13) 

 

which reduces to the continuity equation for matter (3) due to (7) 

and (8). Thus, the set of equations (5), (6) consists of two inde-

pendent equations, and can determine the dynamics of our model. 

However, this approach requires some specification of the matter 

content of the universe or some hypotheses concerning the behav-

ior of the effective EoS. Consideration of hypothetical forms of 

the dark matter and energy causes the most problems in modern 

cosmology. Therefore, we are going to consider an alternative 

approach to our model. In this approach, to make the system of 

equations (5), (6) closed i.e. to make the number of unknowns and 

number of equations equal, we suppose that one can add to these 

equations some kinematic equation for the model parameters.  

First, we suppose that the rate of expansion is given as a function 

of time in accordance to some well-known scenarios. Then, to 

determine the evolution of our model, we want to supplement the 

system of equations (5), (6) by some effective cosmological term 

given by a function of time and/or other parameters of the model. 

3. Exact models from a given H(t) 

In this section, we would like to construct some cosmological 

models in FAC using different scenarios of evolution of the uni-

verse, which have been studied by the researchers (see, e.g., [28]). 

3.1. The power-law scenario 

In this case, we have  

 

nna(t) a t H(t) .0
t

                                                                  (14) 

 

Substituting H(t)  from the last equation into (8), we get  

 

3(1 )(2 )n 1
(t) .eff 0 33 t

 
   


                                            (15) 

 

The effective EoS can be obtained from (14) and (10) as follows  
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Cn,

w 1 ,eff 23n


                                                                          (16) 

 

where C (3 )n (1 )(2 )n,       . Thus, weff  is a constant. 

Due to (14), the deceleration parameter (9) is a constant 

q 1 1/ n    as well. Nevertheless, the EoS of matter is of a time-

varying magnitude, and according to equation (11) equals  

 

3
w 1 ,m 33n t0


  


                                                               (17) 

 

Where (3 ) / C0 0 n,      . It is easy to see from (10) that for a 

given effective EoS w (t)eff  one can obtain the following equation 

for the Hubble parameter  

 

1 (1 )(2 )22H 3(1 w )H H 0.eff 2t t

  
                                  (18) 

 

This equation can be solved with any w cons tan teff   . Substitut-

ing H  from (14) and weff  from (16) into equation (18), we can 

conclude that this equation is satisfied identically. The plots of the 

main parameters of the model in this case can be viewed in Fig.1. 

It is interesting to study the possibility to realize this model by 

some, for example, scalar field. Let us undergo such a scalar-field 

reconstruction. We assume now that the matter content is a single 

self-interacting scalar field   which couples minimally to gravity. 

The effective energy density eff  and pressure peff  for a scalar 

field with potential V( )  are given by 

 

1 12 2V( ), p V( ),eff eff
2 2

                                                (19) 

 

respectively. 

Combining equations (5) and (6) and taking into account (14) and 

(19), one can obtain the following equations  

 

 
Fig. 1: Shows the Main Parameters in the Power-Law Scenario Versus 

Time. We employed n 1.1 , 0.7   and 
0

0.6  . 

 

Cn,2 ,
3t


 


                                                                                 (20) 

 

And  

23n Cn,
V(t) .

3t

 



                                                                      (21) 

 

Integrating equation (20), we can readily get  

 

( 1)/2(t) C t ,n, 0
     

 

Where 0  is a constant of integration. Substituting t  from this 

equation into (21), one can reconstruct the scalar-field potential in 

the following form  

 

2(3 )/(1 )V( ) V ( ) ,n, 0
                                                  (22) 

 

Where 2(3 )/(1 ) 2V [(1 ) / 2C ] (3n C )n, n, n,
      . 

3.2. Emergent scenario 

In this scenario [28], one has the following scale factor and the 

Hubble parameter  

 

 
tn n eta(t) a e H(t) ,0 te

    
 

                                           (23) 

 

where n,   and   are constants. First of all, let us introduce more 

adequate parameters instead of these constants. Investigating H(t)  

in (17) at the limits t 0  and t   , one can establish that 

H / n    and (H H ) / H0 0    , where H H0 |t 0   and 

H H|t   . Therefore, we can rewrite equation (17) for H(t)  as 

follows  

 

H0H(t) H ,
(H /n)tH (H H )e0 0



    

                                          (24) 

 

And the scale factor as  

 

n
H (H / n)t0a(t) a 1 e 10
H

         
,                                             (25) 

 

Where a a0 |t 0   . The deceleration parameter (9) for the rate of 

expansion (23) is as follows  

 

H H (H /n)t0q(t) 1 e ,
n H0


                                                         (26) 

 

From equations (8), (10) and (17), one can obtain the induced 

cosmological term,  

 

33(1 )(2 )H H t0 d t,ind (H /n)t
H (H H )e0 0



    


  

                                        (27) 

 

and the effective EoS,  

 

 

 

H H2 (H /n)t0w 1 eeff
3 n H0

1 (H /n)tH (H H )e0 0
3tH H0

2 (H /n)t1 H (H H )e .0 0
tH H0







   

    


       
 

                                   (28) 

 

The evolution of this model according to equations (24) - (26) and 

(28) for the specific values of parameters is shown in Fig. 2. 
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Fig. 2: Shows the Main Parameters in the Emergent Scenario versus Time 

 

with n 0.3 , 0.96 , 
0

a 0.5 , 
0

H 4  and H 0.5

 . 

 

 

It demonstrates that the effective EoS weff  starts increasing from 

w (0)eff    at t 0  , crosses the phantom line w 1eff    , and 

then asymptotically approaches to the same value 

w (t ) 1eff   . However, for a certain period, 0 w 1eff   . 

3.3. Intermediate scenario 

In this scenario, the scale factor and the Hubble parameter are 

given by  

 

Bt 1a(t) a e H(t) B t ,0

                                                         (29) 

 

where B  and   are constants. Using this H(t)  in (8), we obtain 

the following effective cosmological term  

 

3(1 )(2 ) 1
(t) .eff 0 33 t

 
    

 
                                         (30) 

 

Besides that, we could substitute (8) into equations (9) and (12) to 

obtain the deceleration parameter and the effective EoS as follows  

 

1 1
q(t) 1 ,

B t


   


                                                                      (31) 

 

2( 1) 1 2
w 1 1 .eff

3 Bt 3 Bt Bt

    
     

      

                                        (32) 

 

The EoS of matter can be readily found from equation (11) with 

the help of equations (29), (30) and (32). 

In this scenario, the main parameters of the model demonstrate 

some similarities to the corresponding parameters of emergent 

scenario in the case 1  but substantially differs from them when 

1   . In Fig.3, we compare graphically two parameters of the 

model calculated with 0.6  and 1.1   .  

 

 

 

 

 
Fig. 3: Shows the Deceleration Parameter q and Effective Eos weff  

versus Time with 0.9  and B 0.6 in the Case :(i) 0.6  , and (ii) 1.1  . 

4. Exact models from a given Λeff  

Now, we would like to note an interesting feature of our models in 

FAC. From equation (8) one could conclude that a number of 

exact solutions for our model can be obtained by the phenomeno-

logical laws of evolution of the effective cosmological term. For 

this end, let us substitute the effective cosmological term 

(t,a,H)eff   into equation (8), and differentiate it with respect 

to time. As a result, we obtain the following equation  

 

3(1 )(2 )
a H H 0.

3t a H t

    
   

  
                                        (33) 

 

We can consider this equation as the main one for finding 

a(t) H(t)  or H(t) a(t)  . After that, we can restore the rest 

parameters of our model by applying the equations mentioned 

above. By means of this method in our work [26], the unusual 

solution with some useful properties has been obtained from the 

law  

 

2H ,eff   

 

which yields the following equations for the Hubble parameter  

 

3(1 ) 1
H(t) H ,022 t


  


 

 

And the scale factor  

 

3 1a(t) a exp H t t .0 0
2

   
 

 

 

Later, this model has been tested via the kinematic parameters and 

the observational data [29]. 

4.1. Examples of the standard scenarios 

Let us consider some examples, making use of the phenomenolog-

ical laws often discussed in the literature (see, e.g., [30], and bibli-

ography therein). 

Let us suppose now that  

 

m(a) C a ,eff
                                                                        (34) 
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where C  ,   and m  are constants. Substituting (34) into equation 

(33), one can obtain  

 

1/m
m (3 )/ma(t) t ,

3(1 )(2 )

    
   

  

 

This equation immediately yields the Hubble parameters, 

H (3 ) / mt  , and the deceleration parameter, 

q 1 m / (3 )    = constant . As one can see, we obtain here an 

example of the power-law scenario (14). 

Then, let us assume the following law  

 

C
(t) ,eff 2t

                                                                                  (35) 

 

where C  is a constant. Applying equation (8) to the law (35), one 

can get  

 

2C 1
H ,

3(1 )(2 ) t
 

 
 

 

and, hence,  

 
1B t

a(t) a e ,0



                                                                             (36) 

 

where 2B 2C / 3(1 ) (2 )   . Comparing this equation with 

(29), we can conclude that the law (35) leads to the intermediate 

scenario with 1   . 

4.2. A new scenario 

In this case, we are going to proceed from the following law  

 

t(t) e ,eff 0
                                                                         (37) 

 

where 0  and   are constants. By means of equation (33), the 

effective   - term (37) yields the Hubble parameter as  

 

3 tH(t) H t e ,,
                                                                     (38) 

 

where H / 3(1 )(2 ),      . 

Using the Maple package in solving the equation H(t) a / a  for 

the scale factor, we obtain rather complicated expression which 

includes Whittaker’s function M( , ,z)   as follows  

 

2

0 ,

t
4

2 2 2a a exp H t e (6 5 )M
1

, , t
2 2

 

     
       

 


 
 

 
 

2 2 2(6 5 3 t t )M .
2 1

, , t
2 2

 
        

  

 


 

 
Fig. 4: Shows the Scale Factor a , Hubble Parameter H , Deceleration 

Parameter q  and Effective Eos weff  Versus Time with 0.9  , 

0.66  and 6

0
a 3 10


  . 

 

Let us recall that the Whittaker functions M( , ,z)   can be defined 

in terms of Kummer's confluent hypergeometric functions 

M(a,b,;z)  by [31] 

 

1/2M( , , z) exp( z / 2)t M( ,1 2 ;z).         

 

In Fig. 4, we have depicted the result of numerical solution for the 

scale factor along with some other parameters of this model. 

Using equation (38), we can obtain the explicit expressions for the 

deceleration parameter,  

 

3 t 4 tq 1 t e ,
H ,

     
 

                                                           (39) 

 

and the effective EoS, 

 

4 tt e (1 )(2 ) 4 tw 1 5 2 t t eeff
3H H, ,

             
     

.  

 

So far, the problem of a scalar-field reconstruction for this model 

remains unsolved. In our view, the most probable way to solve 

this problem consists of involving the compound of different 

physical fields and matter. 

5. Conclusion 

Thus, in this work we have considered a simple method of solving 

the dynamic equations in FAC equipped with an effective cosmo-

logical term. A part of results has been obtained from the given 

rate of expansion of the universe corresponding to some well-

known scenarios. For such standard scenarios, we have found not 

only the effective cosmological term, but also the effective EoS 

and deceleration parameter. One could note the great similarity in 

the behavior of the effective cosmological terms of the different 

scenarios expressed by equations (15) and (30). It is interesting 

that in an inflationary scenario, the effective cosmological term 

behaves similarly [26]. In the case of the power-law scenario, we 

have reconstructed it by means of the scalar field potential (22). 

We want to emphasize the obvious attractiveness of this approach 

owing to its simplicity. 

In the rest of our work, we considered some examples of an alter-

native approach to solving the model equation. The key idea of 

this approach consists in applying the phenomenological laws 

assumed earlier by some authors for the evolution of a cosmologi-
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cal term. First of all, we have demonstrated that the known scenar-

ios can arise from some phenomenological cosmological terms. 

Then, we have developed a peculiar cosmological model in the 

framework of FAC proceeding from the certain law (37). Besides, 

the analytic results have been accompanied by the graphic illustra-

tions that could allow us to visualize and analyze the behavior of 

these models. Finally, we would like to point out that the efficien-

cy of approaches considered in this work to the study of FAC is 

not restricted by the examples mentioned above. 
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