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Abstract 
 

The new classes of homogeneous cosmological models for the scalar fields are build in the context of Lyra’s geometry. The different 

types of exact solution for the model are obtained by applying two procedures, viz the generating function method and the first order 

formalism. 
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1. Introduction 

After the formulation of General Relativity (GR) by Einstein, 

many alternative geometric theories have been developed in order 

to explain gravitation phenomena. Inspired by geometrician gravi-

tation, Weyl (1918) proposed a more general theory in which both 

gravitation and electromagnetism are described geometrically. For 

a long time, Weyl's theory was not taken seriously due to non-

integrability of length of vector under parallel displacement. Later, 

Lyra (1951) suggested a modification of Riemannian geometry by 

introducing a gauge function which removes the non-integrability 

condition of the length of a vector under the parallel transport. 

This modified Riemannian geometry is known as Lyra's geometry. 

In contrast to Weyl's geometry, in Lyra's geometry, the connection 

is metric preserving as in Riemannian geometry, and length trans-

fers are integrable. It should be noted that Lyra introduced a gauge 

function into the structure-less manifold, as a result of which a 

displacement field arises naturally. Several authors (see, e.g. Sen, 

1957: Sen and Dunn, 1971; Beesham, 1986, Pradhan and Yadav, 

2009; Shchigolev, 2012) have studied cosmology in Lyra's geome-

try. This alternating theory is of interest because it produces ef-

fects similar to those produced in Einstein's theory. 

Soleng (1987) has pointed out that the cosmologies based on Ly-

ra's manifold with constant gauge vector will either include a crea-

tion field and be equal to Hoyle's creation field cosmology (Hoyle 

and Narlikar, 1964), or contain a special vacuum field, which 

together with the gauge vector term, may be considered as a cos-

mological term. Contrary to common assertion that the displace-

ment vector field can play the role of the cosmological constant by 

itself, we want to emphasize that it can never play this role being 

alone, as seen from the equations presented below in this article. 

In general relativity, Einstein succeeded in geometrizing gravita-

tion by identifying the metric tensor with the gravitational poten-

tials. In the scalar tensor theory of Brans-Dicke on the other hand, 

the scalar field remains alien to the geometry. Lyra's geometry is 

more in keeping with the spirit of Einstein's principle of geometri-

sation since both the scalar and tensor fields have more or less 

intrinsic geometrical significance. Furthermore, the present theory 

predicts the same effects, within observational limits, as far as the  

 

 

classical Solar System tests are concerned, as well as tests based 

on the linearized form of the field equations (Beesham, 1988).). 

To date, several authors have studied cosmology in Lyra's geome-

try with both a constant displacement field and a time-dependent 

one. For instance (Beesham, 1988),), the displacement field is 

allowed to be time dependent, and the Friedmann-Robertson-

Walker (FRW) models are derived in Lyra's manifold. Those 

models are free of the big-bang singularity and solve the entropy 

and horizon problems which beset the standard models based on 

Riemannian geometry. Recently, cosmological models in the 

frame work of Lyra's geometry in different contexts have been 

investigated in several papers (see, e.g Pradhan et al., 2011; 

Agarwal, 2011; Chaubey, 2012; Shchigolev, 2013). 

In the last few decades there has been considerable interest in 

alternative theories of gravitation coursed by the investigations of 

inflation and, especially, late cosmological acceleration which is 

well proved (Riess et al., 1998; Perlmutter et al.; 1999). In order to 

explain so unexpected behavior of our universe, one can modify 

the gravitational theory, or construct various field models of the 

so-called dark energy (DE) which equation of state (EoS) satisfies 

/ 1/ 3w p    . Presently, there is an uprise of interest in scalar 

fields in GR and alternative theories of gravitation in this context. 

Therefore, the study of cosmological scalar-field models in Lyra's 

geometry may be relevant for the cosmic acceleration models.  

Most studies in Lyra's cosmology involve a perfect fluid. Strange-

ly, at least up to our knowledge, the case of scalar field in Lyra's 

cosmology was not studied properly. Here we would like to fill 

this gap. In this paper, we consider a scalar (quintessence or phan-

tom) field and a tachyon field cosmological evolution in the con-

text of Lyra's geometry. With motivation provided above, we have 

obtained exact solutions of Einstein's modified field equations for 

the spatially flat Friedmann metric within the frame work of Ly-

ra's geometry. For this purpose, we employ two methods, viz the 

generating function method and the first order formalism. 

2. Field equations 

The Einstein field equations based on Lyra's manifold, as pro-

posed by Sen and Dunn (1971) in normal gauge may be written as.  
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Where 
i

  is the displacement vector, 2 8 G   and other sym-

bols have their usual meanings in the Rimannian geometry. We 

assume a perfect fluid form for the energy-momentum tensor: 

 

( ) ,T p u u p g
ik i k ik

                                                               

(2) 

 

And co-moving coordinates 1iu u
i

  , where (1,0,0,0)u
i
 . We 

also let 
i

  be a time - like vector 

 

( ,0,0,0),
i

                                                                                (3) 

 

Where ( )t   is a function of time alone The metric for FRW 

space-time is given by  

 
2 2 2 2 2 2( )( ( ) ),ds dt a t dr r d                                                   (4) 

 

Where ( ) sin , ,sinhr r r r   in accordance with a sign of the curva-

ture 1,0, 1k     . For this metric together with (2) and (3), the 

field equations (1) become  

 

3 32 2 23 ,
2 4

k
H

a
      (5) 

32 2 22 3 ,
2 4

k
H H p

a
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Where /H a a  is the Hubble's parameter? 

Equations (5) and (6) lead to the continuity equation as follows  

 

3 3 23 0.
2 22 2

H p   
 

 
      

 
                                         (7) 

 

It is easy to find that the main equations of the model, i.e. (5), (6) 

and (7), can be presented in standard GR form, 
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k
H

eff
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H H p

eff
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And 

 

 3 0,H p
eff eff eff
                                                           (10) 

 

By introducing two effective parameters: 

 

2 23 3
, .

2 24 4
p p

eff eff

 
 

 
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To study this model, it is suitable to consider the EoS parameter 

w  and deceleration parameter q  defined by 

 

2
1 , 1 .

2 2 23

p H aa Heffw q
H a Heff


                                        (12) 

 

In the absence of matter, that is when 0p    , the effective EoS 

is equal to 1w    , which corresponds to the so-called stiff fluid. 

That is why the displacement vector can never play the role of a 

cosmological term for which the EoS 1w    is required. 

To proceed further, we have to specify the type of scalar field. For 

the sake of simplicity, from now on we consider a flat FRW cos-

mology: 0k  . 

3. Quintessence (phantom) Lyra's cosmology 

In this section, we consider a quintessence (or phantom) field as a 

source of gravity in Lyra's cosmology. Therefore, we have for the 

effective parameters (11) as follows 

 

232 ( ) ,
22 4

V
eff

 
  


    

 

232 ( ) ,
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p V
eff

 
 


                                                              (13) 

 

Where 1    represents quintessence while 1    refers to phan-

tom field. In view of (13), the set of basic equations (8), (9) be-

comes  

32 2 23 2 ( ) ,
4

H V                                                                (14) 

 

32 2,
4

H                                                                             (15) 

 

Where and in what follows we assume 4 1G   . Even for the 

given potential ( )V   and displacement function ( )t  , it is diffi-

cult to find exact solution for this model. However, a class of ex-

act solutions can be obtained, say, in terms of the so-called gener-

ating function (Zhuravlev and Chervon, 2000). 

3.1. The generating function method 

Since ( )t  is an arbitrary function so far, we can transfer this 

arbitrariness into a new one, say coupling function ( ( ))f t  as 

follows  

 

42 2 2( ) .
3

f                                                                             (16) 

 

As a result, we have from (13) and (16) that 

 

1 2 2[ ( ) ] ( ),
2

f V
eff
                                                           (17) 

 

1 2 2[ ( ) ] ( ).
2

p f V
eff

                                                           (18) 

 

Re-defying the scalar field as 2 2 2| ( ) | ,f       i.e. 

 

2| ( ) |f d       ,  

 

And putting 2sgn[ ( ) ]f    ,we get the following expressions 

for the effective parameters (13): 

 

2 2( ), ( )
2 2

U p U
eff eff

 
         

 

Where ( ) ( ( ))U V    . As seen in the effective parameters, the 

sign   of kinetic term can change (for 1    ) from positive to 

negative and vice versa. Substituting (17) and (18) into Eqs. (8) 

and (9), we have the following set of the main equations for our 

model:  
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                                                (19) 

 
2 2[ ( ) ] .H f                                                                          (20) 

 

In order to obtain exact solutions and following to the method of 

generating function, we assume that ( )F    . Applying the latter 

to the set of equations (19), (20), we can obtain the following gen-

eral solution: 

 

( ) ,
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d
t

F





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2( ) [ ( ) ] ( ) ,H f F d                                                              (22) 
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And 
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 



 
  

 
                                                           (24) 

 

Moreover, as it follows from (12) and (22), the EoS parameter can 

be given by  
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 
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Let us consider two particular cases.  

3.1.1. The case ( )F     

In order to obtain an explicit solution using this method, one has 

to specify the coupling function ( )f  , or put some other addition-

al condition. Here we assume that the coupling function can be 

represented by  

 

0( ) 2 sin .
0 2

f f


                                                                     (26) 

 

With 2 1 / 2
0

f   and 1    , the kinetic term in (17), (18) can peri-

odically change its signature, evolving from the phantom regime 

to the quintessence one and vice versa. From Eqs. (21) - (24), we 

can find that 
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And 
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The corresponding expression for the displacement function can 

be found from Eqs. (16), (26) and (27) as  

 

2 2 0( ) sin ,
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t
t f

 
 

 
 
 
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                                                         (31) 

 

According to Eqs. (12) And (28), we have for the EoS parameter  

 

2(1 cos )2 0 01 ,
23 2 2 1( ) sin

0 0 0 0

f t
w

f t f t

  

    

 
  
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And the similar expression for the deceleration parameter q  with 

1 instead of the fraction 2 / 3 . For 1   ,
0 5  , 2 0.56

0
f  , and 

4  , this solution is plotted in Fig. 1. 

 

 
Fig. 1: The Eos Parameterw , the Deceleration Parameter q  and the Hub-

ble Parameter H  in the Case ( )F    Versus x t .  

 

It can be seen that the model expands in acceleration. At some 

points, where 2cos 1
0 0

t f    , the expansion is the de Sitter one (

1q    ). The model periodically crosses the phantom divide in the 

both direction. 

3.1.2. The case ( )F     

In order to obtain an explicit solution with some interesting feature 

in this case, we chose the coupling function ( )f   in the following 

form: 

 

0( ) .
f

f 


                                                                                    (33) 

 

For this choice, we have 

 

exp( )
0

t                                                                                 (34) 

 

After integration, Eqs. (21)- (24) gives 
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Where the constant of integration is chosen so that (0)
0

a a . Be-

sides, we can find that the potential is given by  
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V f f
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After that, the EoS parameter can be found as follows  

 

2 2 exp(2 )2 0 01 .
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The similar expression can be also obtained for the deceleration 

parameter. Some features of this solution is shown in Fig. 2 for  

 

1   , 1
0
   and 2 1.12

0
f  .  

 

 
Fig. 2: The Eos Parameterw , the Deceleration Parameter q  and the Scale 

Factor a  in the Case ( )F    Versus x t .  

 

It can be seen that this model expands with acceleration as well. 

At the only point 1 ln( / )
0 0 0

t f  , the expansion is de Sitter, 

that is 1q   , and the model crosses the phantom divide, evolving 

from the quintessence sector to the phantom one. 

3.2. The super potential method 

Some more exact solutions can be obtained in terms of the so-

called superpotential. This procedure was first performed with a 

single scalar field by Zhuravlev and Chervon (2000), and it was 

later re-opened as "the first order formalism" and extended on the 

case of two or more fields (Bazeia et al., 2006). Keeping in mind 

the superpotential method, we now represent the geometrical field 

of displacement vector as a function of a new field ( )t : 

 

42 2( ) ( ).
3

t t                                                                            (39) 

 

Now we get the new set of equations instead of (14), (15):  

 
2 2 23 2 ( ) ( ),H V t                                                             (40) 

2 2( ),H t                                                                          (41) 

 

Let us introduce the superpotential function ( , )W    by the equa-

tion  

 

( , ),H W                                                                                  (42) 

 

In which the Hubble parameter ( )H t  , as a function of time, is 

presumably expressed in terms of fields ( ), ( )t t   . Substituting 

(42) into (41), one can obtain two first-order equations as follows:  

 

, ,W W                                                                           (43) 

 

Where /W W 

   , /W W 


   . The potential can be ob-

tained from (40), (42) and (43) as follows  
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As the potential depends on   alone, we have / 0V     . Tak-

ing into account (43) and (44), it is easy to show that this is equiv-

alent to 

 

3 0.
dW

WW
d t



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The latter can be satisfied in many ways. Let us now consider one 

simple example of exact solution. We suppose that the superpoten-

tial is presented by  

 

( , ) ( ) ( ),W X Y                                                                      (46) 

 

That allows to rewrite (44) in the following form:  
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
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We consider a particular solution for this model based on 
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Where 23   . So we have  
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0
t

H t X e t




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At the same time, we have the following expression for the poten-

tial (47):  

 

22( ) .
02

V X e
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


                                                                    (52) 

 

Combining and integrating Eqs. (49), (50), we can get  
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exp( ) sinh( ) ,

 
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                                                  (53) 
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Where the constant of integration is chosen to be equal to zero. 

Substituting the latter into (50), we can obtain the following equa-

tion for  :  

 

3 /

sinh( ) .
0

X



    
 

                                                     (54) 

 

This equation can be integrated explicitly for several values of   

(or   and   ). 

As an example, we consider the case 1, 3 / 2     or 3 / 2  . 

Integrating equation (54) and taking into account (39), we can 

obtain  
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 
                                                            (56) 

 

Where the constant of integration is chosen from the condition 

tanh{ 3/ 2 (0)} 1   . With the help of (51), (53) and (55), it is 

possible to find that  
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And 
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From Eqs. (12) And (56), it can be found that  

 

4 1 6
, .

2 22(3 2) (3 2)
0 0

w q
X t X t
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Time evolution of this model is plotted in Fig. 3 for 1   , 

3 / 2   and 3 / 2
0

X  . 

 

 

Fig. 3: The Eos Parameterw , the Deceleration Parameter q , the Scale 

Factor a  and the Hubble Parameter H  Versus x t   

4. Lyra's cosmology of tachyon field 

In this section, we consider a tachyon field   as a source of gravi-

ty in Lyra's cosmology. Substituting the well-known expressions 

of tachyonic   and p  into (11), we have  

 

2( ) 3
,

821

V

eff

 




 



 

 

232( ) 1 .
8

p V
eff


                                                            (59) 

 

As before, we put ( ) [ ( ), ( )]H t W t t   and suppose the substitu-

tion (39). Due to (59), the set of basic equations (8), (9) becomes 

as follows  
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2 221

V
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
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                                                              (60) 
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                                                                   (61) 

 

By inserting ( , )H W    into (61), one can obtain two first-order 

equations,  

 

2

, ,
2 23

W

W
W W


 




   


                                                        (62) 

 

Where /W W 

   , /W W 


    . The potential is followed 

from (60) - (62) in the form:  

 

 
21 2 2 2( ) 3 4 .

2
V W W W

 
                                                    (63) 

 

As this potential is independent on   , we have / 0V    .  

In view of (62), (63), it is easy to prove that the latter is equiva- 

lent to equation (45). 

So we have a wide range of possibilities to solve the model  

Equations assuming some certain dependence ( , )W   .  

Instead, we can provide several classes of solution for the model 

evolving from some conditions on superpotential. Below, we 

show how it can be realized with the help of some ansatz for the 

superpotential. 

One of the simplest ansatz for the superpotential may be written as 

follows:  

 

( , ), ( , ),
1 2

m mW W W W     
 
                                        (64) 

 

Where , ,
1 2

m    are constants, and the equality 
, ,

W W
   

  is 

true. Therefore in view of (45) and (64), we obtain 

 

( ) ( ( ), ( )) ,
3( )

0

m
H t W t t

t t
  


                                                   (65) 

 

Where 
0

t  is an integration constant. Hence, equations (62) be-

come as follows  
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From the last equation in (62) and Eqs. (64), (65), it immediately 

follows that the displacement vector is given by  

 

2
( ) ( ) .

2 033

m
m mt t t 

    
 

                                                   (67) 

 

The EoS parameter and the deceleration parameter (12) are con-

stant and defined by  

 

2 3
1 , 1 .w q

m m
                                                                   (68) 

 

In order to distinguish between various DE models, Sahni et al. 

(2003) proposed a cosmological diagnostic pair { , }r s  called state-

finder. The statefinder test is a geometrical one based on the ex-

pansion of the scale factor ( )a t  near the present time 
0

t :  

 

1 2 2( ) 1 ( ) ( )
0 0 0 0 02

a t H t t q H t t      

 

1 3 3( ) ...,
0 0 06

r H t t    

 

Where ( ) 1
0

a t   and , ,
0 0 0

H q r  are the present values of the Hub-

ble parameters, deceleration parameter and the statefinder index 

3/r a aH  respectively. The statefinder parameter s  is the com-

bination of r  and q : ( 1) / 3( 1/ 2)s r q   . The important feature 

of statefinder is that the spatially flat  CDM has the fixed point 

{ , } {1,0}r s   . Departure of a DE model from this fixed point is a 

good way of establishing the `distance' of this model from flat 

CDM. In terms of the Hubble parameter and its derivatives with 

respect to cosmic time the statefinder parameters of a flat FRW 

model are given by  

 

2 3
1 3 , .( )2 3 23 3 2

H H HH H
r s

HH H H H


    
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With the help of Eqs. (65), (69), one can find that  

 

9 18 2
1 , ,

2
r s

m mm
     

 

For the model considered.  

5. Conclusion 

In this paper, we have studied FRW cosmological models in nor-

mal gauge for Lyra's manifold with the quintessence (phantom) 

and tachyon scalar fields as the origin of gravity. We have built 

the new classes of FRW cosmological models of these scalar 

fields in the context of Lyra's geometry. The different types of 

exact solution for the model are obtained by applying two proce-

dures: the generating function method and the first-order formal-

ism. We hope that the derived model is the next step in the devel-

opment of Lyra's cosmology, and can be utilized to describe the 

evolutionary dynamics of the actual universe. 
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