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Abstract

This paper studies effects of the triaxiality and radiation pressure of both the primaries on the stability of the infinitesimal motion
about triangular equilibrium points in the elliptical restricted three body problem(ER3BP), assuming that the bigger and the smaller
primaries are triaxial and the source of radiation as well. It is observed that the motion around these points is stable under certain
condition with respect to the radiation pressure and oblate triaxiality. The critical mass ratio depends on the radiation pressure, triaxi-
ality, semi -major axis and eccentricity of the orbits. It is further analyzed that an increase in any of these parameters has destabiliz-

ing effects on the orbits of the infinitesimal.
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1. Introduction

The present paper is devoted to the analysis of the effects of the
radiation and triaxiality of both the primaries on the stability of
infinitesimal moving around the triangular equilibrium points of
the elliptical restricted three-body problem. The elliptical restrict-
ed three-body problem is the generalization of the classical re-
stricted three-body problem, it possesses some of the useful prop-
erty of circular restricted three-body problem. This model has a
restriction that the third body(infinitesimal mass) has no effects on
the two massive bodies(Primaries).The eccentricity of the orbits
plays a significant role which might not be seen in the circular
case .The orbits of most celestial bodies are elliptical rather than
circular as such; the elliptical restricted three-body problem de-
scribes the dynamical system more accurately. In elliptical re-
stricted three body problems, the primaries move in elliptical or-
bits about their common centre of mass, without being affected by
the third body of infinitesimal mass. The position of the primaries
is fixed and the coordinates are obtained by dividing them by vari-
able distance between the primaries. The Hamiltonian of the sys-
tem depends explicitly on time. The bodies of the elliptical re-
stricted three body problems are generally considered to be spher-
ical in shape, but in actual situations, it is observed that several
heavenly bodies are oblate spheroid or triaxial rigid body. The
planet Earth, Jupitar and Saturn as well as stars Archid, Archerner,
Antares, Altairand and Luyten areeither sufficiently oblate or tri-
axial rigid bodies and are significant in study of celestial bodies
and stellar system. The lacks of spherity of heavenly bodies causes
a large perturbation.

The elliptical restricted three-body problem has been described in
detail by Danby(1964), Bennet(1965), Szebehely(1967) , Mar-
keev(1978).The The problem was further generalised by taking
certain specific characteristics of celestial bodies like oblateness
and triaxiality. The influence of eccentricity of orbits of the prima-

ries with or without radiation pressure(s) and the triaxiality of the
primaries on the existence and stability of the equilibrium points
were studied by Gyorgyey(1985), Kumar Kumar and Choudhary
(1990),Markellos et.al. (1992), Zimvoschikov and Thakai(2004),
Ammar(2008), Narayan and Kumar(2011), Singh and Aishetu
(2012 a), Singh and Aishetu (2012 b), Kumar and Ishwar(2014),
Narayan and Usha(2014),Usha et al.(2014),and El-Salam(2015).
The present study is an attempt which is devoted to the analysis of
the stability of triangular points, assuming that the bigger and
smaller primaries are oblate triaxial and the source of radiation as
well. This study will contribute to understand the effects of
oblateness, radiation, eccentricity and triaxiality on the celestial
dynamical systems.

This paper has five sections, section-1 describes introduction,
section-2 provides the equation of motion, while section-3 de-
scribes the location of the triangular equilibrium points; similarly
section-4 contains stability of the equilibrium points and in the last
section-5, discussion and conclusion are drawn.

2. Equation of motion

Suppose there are two bodies S; and S,of masses m;and m,with
m; > m,moving in a plane about their common centre of mass O
in Keplerian elliptical orbit having eccentricity e. It is further as-
sumed that the bigger and the smaller primariesm; and m, oblate
triaxial and are the source of radiation as well. A third body P of
infinitesimal mass moves in the plane of motion S, andS, under
their gravitational attraction but without affecting their motion.
The motion of the smaller primary is not affected by the bigger
primary, but the motion of both the primaries affects the motion of
the infinitesimal mass. Consider the equation of motion in a fixed
co-ordinate system using dimensional quantities and variables
.The dimensionless variables are introduced by using the distance
r between the primaries given by:
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_a(l-—e?)
r= 1+ ecosv

where a and e are Semi-major axis and the eccentricity of the
elliptical orbit of the either primary around the other and v is the
true anomaly. Suppose P(x,y) are the co-ordinate of the infinites-
imal mass of the primaries and the line joining the primaries is
taken as X-axis. The Y-axis is taken as the line passing through O
and perpendicular to the X-axis. Let R, and R, be the dimension-
less distance between the primaries. The equation of motion of the
system  with the minor modification (Khanna and
Bhatnagar(1998)) and Usha et al.(2014)is given by:

d?x 1 [mk*(x—x)q; = mpk?(x —x;)q;
dtZ - nZ R13 R23
n 3 k?m;(x — x1)(20; — 02)qy
2R,%r,?
_ 15 k?my (x — ;) (0; — 0,)q;1 y?
2R131‘14
n 3k?m,(x — x;)(201' — 0,')q;
2R23r22
_ 15 k*m, (x — x) (01" — 0,")qp y?
3
2R, ry*
ey _
dtz . 2 2 2
_ 1 [mikP(y-y)a: |, mpK*(y-y2)de , 3K'm;(y-y1)(201-62)q
n? R,® + R,® + 2R,°r,2 +
3k’my (y—y1)(01=02)d1 _ 15 kK’my(y=y1)(01=02)a1 y*
2R,%r,? 2R, %14
15 k*m, (y=y2)(01'~02")q2 y* | 3K*m,(y-y2)(201'~0,") +
2R, %1, 2R, 31,2
3k’m,(y-y2)(01'~0,")
) @.1)
Where
a? b? c?
01 = (A1 —Az)i0, = (A —A3)iAy = 51 Ay = A3 =

where a, b, c are the axis of the triaxial rigid body of bigger prima-
ry of mass m; . whereas o7 = (A] —A}) ; o), = (A, —AY) ;

1”2 12 '

A, =% ‘A, =% T AL =#02 where o, ,0,,0} and o), are
oblatenessparameter

wherea’, b’, c’are the axis of the triaxial rigid body of smaller pri-
mary of mass m,. where k is the Gaussian constant, t*is the di-
mensionless time,q, and q,are the parameters characterising the

radiation pressure of primaries.
2 3 3 ! ! I
n?=1 +E(2A1 — A, —Ag) +§(2A1 — A, —AY)
where

Rf = (x—x1)%* + (y —y1)?

Ry

$2(m2) N

sym) O

(Xu,Y) Y2

and
RS = (x—x2)* + (¥ —y2)? (2.2)

We shall introduce a rotating co-ordinate system (X,¥) by substi-
tuting

7 = zeV
where Z = X +iY
andz =x+iy (2.3

After using the complex vector, the equation of motion (2.1) takes
the form

d?z
de?
_ 1 [m1k2(z_z1)‘h + m,k?(z-2,)q, 3k?m,(2-2,)(20,-02)0, +
n2 R,® R, 2R, %r; 2
3k’my(z-25)(20,'~0,")q, | 3k’my(z'~2",)(0,-0,)qs +
2R,%r,2 R,°r 2
3K2my (2 ~2"5)(01'~0,")d, _ 15k*my(2-2,)(01-02)d1 ¥
R,%r,2 2R, °r *
15 k?m, (2-2,)(01'~02")q2 y* 24
2R,%r,4 ] (24)

where z* = iy ,z] = iy, and z; = iy, .Now differentiating equa-
tion(2.3) twice with respect to t* and taking help of (2.4), we get:

izz +2i dv dz 1 [mlkz(zzzl)‘h msz(Z—zzz)Qz +
dt* dt*  dt n? R, R,
3k?my(2-2,)(201-02)d + 3K2m,(z-22)(20,'~0,")q, +
2R,°r;2 2R,°%r,2
3k’m, (z°-2",)(01-02)ds + 3K2m,(z° ~2"5)(01'~0,)d,
R;°r;? R;r,2
15 k?m, (z-24)(01-02)dx y° _ 15 k’my(2-2,)(01'~05")q, Yz] +z (2)2 _
2R, °ry* 2R,°r,* dt*
. d?v
iz (2.5)

In equation (2.5), the second term in the left hand side represents
the Coriolis acceleration .The first term in the right hand side of
the same equation is the gravitational effects due to radiation as
well as triaxiality of the of the primaries .The second and third
term represents the centrifugal effects and the acceleration normal
to the radius vector due to non-uniform rotation of the system
respectively.

The complex position vectors z; and z, are the location of the
primaries, which are permanent on the real axis (%, y)of the sys-
tem, we have:

— —P1 - P2
74 = = Zyo = Xy = 2
1 1 (1+e cosv) 12 2 (1+e cosv) (2.6)

where p; and p, are positive and

Pi_a_m

P2 az my

@7)
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where a; and a, are the semi major axis of the elliptical orbits of ~ 3k*ma(z-25)(201'~02")q2 _ 3k*ma(p—p2)(201'-02")q2 (2.16)
the massive primaries described about their centre of mass, and 2R;%r;? 2r2r,5 '
m,, m, are the masses of the respective bigger and smaller prima- .
ries. Further introducing a dimensionless pulsating coordinate ~ Again
system given by:
3k my (2'~2'1)(01-02)q1 _ 3K*m1(p"=p")(01-02)q1 2.17)
z ; Ri%rq? - r2ry5 '
p= (;) =x+iy (2.8)
Also
where
3k*my (2" —2"2) (01" =02 )q2 _ 3K*my(p*—p*,)(01'-02")q,
a(1-e?) Ry3r,? - 1271,5 (2.18)
= (2.9)
1+ecosv
Similarly
Is the distance between the primaries in which a is a semi-major
axis of the one primary around other. From equation (2.8) and  15k%my(z-21)(01-02)q1y? _ 15k*my(p—p1)(91—02)q1)> 2.19)
(2.9), we get 2R, 3r* - 2r2r,7 :
X(1 + ecosv) And
X= —————
a(l—e?)
15k*m; (2-23) (01"~ 02" ) q2y* (2.20)
__ ¥(1+ecosv) (2.10) 2Ryt ’
y= a(1-e?) ’

Since these primaries are fixed in the coordinate system, we have
form equation (2.6) and (2.10)

« =)(_1(1+ecosv)= “P1 _Ta_
t a(l —e?) a(l—e?) a s
< =§(1+ecosv)= P2 =a_2=1_
2 a(l—e?) a(l—e?) a B
Here= ——2— _ Therefore, the fixed location of these primaries in

m;+m,
terms of coordinate (x,y) system are represented as (—, 0) and
(1 —, 0).The coordinate taken into consideration regarding the
problem of two bodies moving in the elliptical orbit are that ,the
orbit of m; andm, with respect to the centre of mass with semi-
major axis isa; = apand a, = a(1 — p) respectively . Introduc-
ing true anomaly v as an independent variable for solving the
equation governing the motion of the system. From equation (2.8)
we havez = rp, replacing

m, k? (z—21)q1 _ m1k2(P_Pl)Q1

= T (2.11)
where

ri=lp—pil® = x+w?+y? (2.12)
Since

P =X =—H

mald(e e _ il -paas (213)
where

ri=lp—pol?=(x—-1+w?+y? (2.14)
Since

p2=%x=1-p

and

3K?my(z-21)(201-02)q1 _ 3k’my(p—p1)(201-02)q, (2.15)

2R{%r2 2r2r45

Similarly

Now taking vas an independent variable, substituting all required
above values in equation (2.5), we get:

)2 [d2p 2] 1 p [ (dv)z (%4 1p)-
r(dt*) [dv2+ Zldv tp dt+? r dt* + dv+l'0

[r d*v drav] _ 1 [mlkz(p—pl)ql + mak?(p—p2)q2 +
dt? dt* dt* n2 21,3 r2r,’
3 k*my(p—p1)(201-02)q 3 k2my(p—pz)(201'-0;")q,
+ +

21215 2121,5
3k*my (p*—p*)(01-02)q1 n 3k*my(p—p*,) (01 -2 )a;

r2r,5 21,5
15 k*m, (p—p1)(01—02)q1 ¥* 15 k*m, (p—p2) (01’ —02")q2 ¥*

- (2.21)
2r2ry7 2r2ry7
a(1-e?)

We have=r(v) = [Hecm] , which is the solution of two body

problem involving the primaries S; and S, . The integral of angu-
lar momentum of two body problem is given by:

2 dv 2= _ 2\2
(r ) a(l — e®)k? (my + m,) (2.22)

dat*

Differentiating the above equation (2.22), with respect to t*, we
get:

d?v dr dv
+2
dt* dt*

=0 (2.23)

r
dt*Z

The equation of motion of the two primaries is given by:

d?r dv\2 _ —k*(my+my)

(i) = (2.24)
Using equation (2.22), the equation (2.24) becomes:

d?r dv\?2 _ -1 . r2dv 2 2.5
ac? r (dt*) T a(1-e?)r? (F) ( : )

Substituting the value of (2.23), the equation (2.25) becomes

d?r _r(dv)z -1 (d_v)z
dt*? dat*) T a(1-e?) \dt*

Substituting the values of (2.23) and (2.26) in equation (2.21) we
get

@Y, gide _
(dv2)+21dv -

r

a(1-e?) [P_

i{ my (P—P1) my;  (P—P2)92
2 lmytm, 1} mytm, 1

(2.26)

3my (p—p1)(201—02)q;
my+m, 2ry

+
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3m, (p—px)(201'-0,")q, 3m; (p"=p")(01—-02)q

5 5 +
my;+m, 215 my;+m, Ty
3m, (p'=p (0 ~0,)az _15m (p=p1)(01—-02)¥%qy _
my+m, rs my+m, 2r]
15m, (p—pz)(vl’—vz’)yzqz}] 2.27)
my+m, 2r] ’
Using
_ ¢7L(1—ez)‘= m, 1—pu= my ’
1+ecosv my+m, my+m,
The above expression will be reduced to the following form:
dzp) .dp 1 [ 1 {(1—u)(p—pl)q1 w(P=p2)4z
(dvz +2i dv ~ 1+ecosv n? rd + r$ +
30-m(p=p)R01-02)41 3u(p=p2) (201" ~0,")q, n
5 5
217 215
30" =" )@1=0)0 3u(p’=p’y)(01' -0, )q2
rs TS
15(1-w)(P=p1)(01-02)¥%q1 _ 15u(p—pz)(al’—az’)y2qz}] (2.28)
277 2r] '

Replacing

p=x+iy ,pr=x1+iy;  pa=x+1y, , p =1y ,pi=
y1.07 = 1iy2

In the above Equation(2.28) and equating real and imaginary
parts, we get:

d?x dy 1
— )2t =———|x
dv? dv 1+ ecosv
_ l A =(x—x)q N u(x — x3)q,
n? 3 T3
n 3(1 —w(x — x1)(201 — 03)q1
2r?
n Bulx — x)(20y — 0,')q,
21y
4 - 15(1 — W) (x — x1) (01 — 02)y2q1
21/
_ 15u(x — x) (01" — 0,")y?q;
2r)
And
d%y dx _ 1 _ A (A=-m-y)a1 | KO=Y2)42
(ﬁ) +2 v 1+ecosv [ nz{ rd + T3 +
3(1-W)(Y=y1)(201-03)d1 | 3U(Y=Y>)(20,'~05")q,
s + 5 +
217 21y
3(1-WY=y1)(01=02)q1 | 3h(Y=¥2)(01 =02 )a2 _
5 + 5
L&Y 2
15(1-w) ¥ -y1)(01-02)y%q: _

15u(y—yz)(ﬂl’—ﬂz’)y2qz}]
2r] 2r]

(2.29)

Hence the equation of motion of infinitesimal shall be reduced to
the following form by replacing

Xp=—px=1-puy;=0y,=0

d?x dy 1
——)-2Z=— " |x
dv? dv 1+ ecosv

B l{(l —WG e -1+ 0

n? e T
+ 3(1 —w)(x + ) (201 — 02)q
2rp
" Bu(x — 1+ w)(20," — 0,)q,
2ry
150 =) (x + w)(o1 — )y’ qs
21
15u(x — 1+ w)(oy' — 0,")y?q, ]
- 2ry }

and

wyaz | 3(1-p)y (201-02)q1
3

1 1 ((1-wyq.
1+ecosv [ - F{ r3 + 3 2r +
3uy (201~ )z n 3(1-pW)y (61-02)41 4 3y (01'~02")a;
2r rs r$
15(1-p)(01-0)¥%q; 15#(01’—62’)313112}] (2.30)
2r] 2r] !

The differential equation of motion of the third body P in non-
dimensional barycentre, pulsating and non-uniformly rotating
coordinate system (x, y) is written in the form:

" n 1 (6‘{2)
x"=2y" = —
y 1+ecosv \0x
a

" "no__ 1 (_ﬂ)
y +2x7 = 1+ecosv \dy

where " denotes differentiation with respect to v, and

(2.31)

x2+y? 1 [(1-p) (1-p) (20,—o0; (201" -0,")
0= y+_2[ Wy | Haz | u(; z)CI1+ﬂ L0 qz
2 n 1 T2 21y 275
3(1-W)(01-02)y%a; 3#(61’—02’)3/2612]
2r 2rs

(2.32)
where

n? =1+>(20, — 0) +(20{ — 03) (2.33)

¢ = (x+w?+y?
and
7= (- 1+p?+y?

(2.34)
Thus we have the equation of motion of an elliptic restricted three

body problem in which both the primaries are oblate, triaxial and
radiating.

3. Location of equilibrium points

The equilibrium points of the system are the stationary points, so
are given by the equation

a0 _ o0 _

Frilr (3.1)

Where 2 is given in equation (2.32), so we get:

a0 _ . 1 [(1—P-)(X+ﬂ)‘h " u(x—1+u)q, + 3(1-w)(x+1)(201-02)q; +
ox n? r s 2
3u(x=1+0)(201 =02 )q2 _ 15(1-p)(x+1)(91=02)y*qs _
2rs 2r{
15u(x—1+p)(a,'—0,")y%q] _
2r] ] =0 (32)
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And

20 — [1 _ i{(i—#)ﬂh + 1az + 3(1—u) (4551—30'2)411 +
oy n? rd 3 217

34 (401" -30,)q, _ 15(1-p)(01-02)y%qs 15#(U1’—Uz’)y2qz}]

2rs 2r] 2r]
(3.3)
Since y # 0,we have from equation(3.3):
1— % [(1—:;)‘11 + % + 3(1-w) (::51_352)‘11 + 3u (40'12;5302 )92 _
1 2 1 2
15(1-p)(01-02)y2q, _ 15#(0'1’_‘72’)312‘12] =0 (3 4)
2r] 2r] ’
Using the above equation (3.2) and (3.4), we get:
—_ — —_ 2
[_nZ(l -+ (1 rl;)‘h _ 1s@ M)(Z‘;17 02)Y 41
1 1

15u(01'~02")y*qz | 3(1-4) (201-02)q1 _ 30— (x-1+p)(0:1-02)q1 +

2r] 2ry 2ry
3u20y' -0, )q,  3u(oy -0, ) (x—1+p)q

12T502 2 _ suloy Uzrs U 2] =0 (35)

2 2
and
o L [rae |, 30-px+w)(o1-0x)q; | 3u(x+p)(01'~03")a,
Bt n? [ r3 + rp + ry +

3#(20'1,202’)‘12 _ 15#(0'1,_;72')}’2‘12] =0 (36)

275 21,

Since g;,0, , 0;' and o," are small quantities .If we take g, =
o, = 0;' = g, = 0,the solution of the above equation is given by
r, =1, =1and n = 1.Now we assume that the solution of the
above equation ,when g; # 0,0, # 0,0," # 0 and o," # 0 as

= 1+ €1
rn=1+¢ (3.7)
where €; and e,are less than 1.

Substituting the values of r; and r;, in equation (2.34) we get:

1
X=E—,u+(61+62)

V3 2
y=+2[1+3(e + )] (38)
Substituting the values of r; and r, from equation (3.7) and x and
y from (3.8) in equation (3.6), neglecting the higher order terms,

we get:

1 (e-e) [-3 , A-p (A-peg
x = 2 u+ 3 + 8 €1 20 + 21 [}
7 ¢ (1- 1—we;
LNpa G=m A-pe o
8 2 2u 2u
3 3u 3ue; o,
[8 81— 8(l-p T |7
4 —7 7u 7ues é iy
8 8(1—;1) T8(1-p) 2|°?
- 2(_ (e+e) | [-19 _ a-w _ A-we;
y_i[1+3{ 3 +[8 et 2u 2u ]Ul+
15, & (A-p) |, (-pei - 3u 3uel
[o+5 -Gt ]"z+[T‘8(1_ﬂ>+m—
W Tper | &)
62]01 +[ 8(1-p) s(1-u)+ 212 }] (3.9)

4. Stability of equilibrium points

There are two triangular librations points of the problem of in the
plane of finite bodies. Since the equilateral points are symmetrical
to each other, the nature of motion near the two triangular libra-

tions points will remain the same. Therefore, it is sufficient to
analyze the motion of infinitesimal having the location (xg, ¥, )
given by the equation (3.9). In order to investigate the stability of
the libration points (3.9) in the first approximation, deriving the
variational equation of motion in the coordinates. Let, n denote the
small displacement in (x,, v, ). Then

x=xq+¢

Y=Y t7n

Differentiating we get:

x'=¢y' =n'

And

x" =", y"=n"

Now applying Taylor's theorem and retaining first order terms in
the infinitesimal £and, we get:

0y = 0+ 503 + 003,

And

0y = 0y + 80y, + 10y, (4.1)
Here ,the subscript in 2 indicates the first and second partial de-
rivatives as it appears once or twice, and the superscript 0 indi-
cates that , the derivatives is to be evaluated around the equilibri-
um points (x,, y, ). Also, at the equilibrium points

0=09=0,
We have
0, = E-ng + 77923/

n, = &0y, +n09, 4.2)

Substituting the values from equation (4.2) and values of
x',y',x",y" in equation (2.31), the equation of motion takes the
form

5” -2 77’ = Q[gﬂgx + Tlﬂgy] (43)
n"'+2¢&=0[ E-ng + ﬂﬂfzy ]
Where@ = [1+ecosv]

Now, differentiating 2 partially with respect to x,y respectively
and evaluating (2, ,f,, and ,, at the equilibrium points
(x0, Yo ) given by equation(3.9), we get:

€, 3ue, 3ue, 691  169€; 39 ue]
Q,?x —+———1— 2+ [—+—+ t— t—
2 32 32
3 . 7€ 15 75 625 € 599 ue 3 7€
=+ 1]+O—2[___”__1 ¢+___1]+
4u - 4Ap 8 16 32 32 au  4u
,[33 147u | 3€, | 191 pe) 9u? 15u%€)
1116 32 16 16 16(1—u)  16(1—p)
33 2074 7€, 483 e, 21u? 35u2€)
az[ b2 2 : (4.4)
16 32 16 32 16(1-p) = 16(1—p)
1 el uey  2€, 14ue) 11 17u
08, = ((3-p§ o ) -
2 9 9 9 9 24 24
1996 143 pe; 17e 13# 557 € 445 pe;
—_——t = 1] + o; [ ==ty —14
a8 48 3;¢ 18u 144 144
1 17e§] ‘o 7 + 31p 161 ey 7 € u? u?ey ]
3u 18u o1 48 36 6 4(1 u) 12(1—-u)
-3 91u 661 ue 47 € 7u? 7u? €
az'[——— e + (4.5)
4 48 72 72 12(1-u) = 36(1—p)
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9 3ue] € 849e; 25

o = 34docp o[22
801 e 3 3 33 837 €] 21 837 H€1 3

32 2u Z] 2 [E % Yt T tTm
3€] oy [-21 183u 8113 ue, , 603u®  7789u’%€)
e Gwls 16 T 1 T s 1w |+

A [2 _507u 279 uey . 549u? 195;425;] 4.6)
(1-p) L4 16 16 32 16 (4.

When eccentricity is neglected (i.e, e = 0) the variational equa-
tion reduced directly to those for the circular restricted three body
problem(CR3BP).

Now, in order to investigate the stability of the equilibrium points,
new variables given by the equation below are introduced as:

_ _ _ 4« dan
_flxz_n1x3__x e

T a )

Substituting these values in equation (4.3),the system of equations
takes the form:

% =Py x1 + Ppxy + Pisxz + Pyxy;i=1,234 (4.8)
Where
Py =P =P3 =Py =Py =Py3=Py3 =P, =0
Pi3=1,Pyy =1,P34 =2 ,Py3=-2
We get:
Py = m = ¢no,
Py = Py = m qb.()
Py = m Yy = P25, (4.9)
Where @ = [1+ecos ] . The coefficient in the system of equation

(4.7) are the periodic functions of v with period. Taking the aver-
age over the system, we get:

©
7 p0,©) 4 pO,©) 4 pO, O 4 p® O

ZL (4.10)

Where
is

1 2
) _ ) f o —
P’ = an Pis(v)dv,i,s =1,2,34
0

From the formula (4.10), we obtain after evaluating the values:

Pl(f) — P1(§) P(O) P(O) Pz(g) — Pz(g) P(O) P(O)

. p® _ 0) 0) _ ) _
0; P = 1,1)2(4 = 1,P34) =2,P0 =2 (4.11)
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The system of equation in the first approximation is represented as
follows:
The characteristic equation for the system is:

—Q224+R=0 (4.15)
Where,
Q= PP 4R -4 (419
And R = PP — POPY
The roots of characteristic equation(4.15) is given by

i

A= [g + (QZ‘T‘“‘)] (4.17)
The characteristic roots will be purely imaginary if
Q<0 (4.18)
And
QZ2—4R >0 (4.19)

From Equation (4.18) it follows that:
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It is clear when o, , 05, 01 , 05, €1, €3 are zero, we get

0 < e <0.661437827 (4.20)
The behaviour of the system can be investigated when the infini-
tesimal mass moves around the triangular equilibrium points un-
der the radiating oblate triaxial primaries by plotting the transition
curves for the different values of e and the parameters
0y,0,,0{,0, and the radiation parameter e; and e; .Using
MATLAB 7.11.0 version, we have plotted curves between differ-
ent values of eccentricity of the orbit of infinitesimal and u* (criti-
cal mass ratio) by varying radiation parameters and oy , 0, and
01,0, shown by the figure(1-10 ),maintaining the condition
lo; — 05| > 0and |g] — ;| > 0.

We observe that the increment in the radiation parameter attributes
to the decrease in the region of stability of the infinitesimal around
the triangular equilibrium points which is obvious from the fig-
ures. Also,the increase in the difference |o; — o] > 0 and in-
crease in the |o; — ¢,'| > 0 has also a destabilizing effect which is
also obvious from the figures.

In case the eccentricity e does not satisfy inequality (4.20), the
characteristic roots will either real or complex conjugate. In the
case with complex roots, there are roots with positive real parts,
causing equilibrium points to be unstable in the first approxima-
tion.

From the inequality (4.19), we obtain:

[Au? +Bu+C] =0 (4.21)

(- eZ)
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Since < %,the inequality is satisfied for 0 <
given by

u < u*, where u* is

_ /2
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ing equation:
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Thus the triangular equilibrium points are stable if the eccentricity
‘e’ satisfies the condition (4.20) and the mass ratio u* obeys the
(4.22). The dependence of u* on the eccentricity e are plotted in
the graphs for different values of oblate triaxial parameters o ,0 ,
o, and g5 and €7,e5 ,where €1,€5 are radiation pressures. It is ob-
served that with the increase in the radiation pressure the range of
stability decreases and also, the increase in the difference |o; —
o,| and |a; — o, |have a destabilizing effect.

5. Discussion and conclusion

The equation of motion of an infinitesimal particle has been de-
rived under the assumption that the primaries are oblate triaxial
and the source of radiations moving around each other about their
centre of mass in their elliptical orbits. These equations are effect-
ed by radiation pressure, oblate triaxiality, semi major axis and
eccentricity of orbits of the primaries.The triangular equilibrium
points shifted away from the axis with increase in radiation fac-
tors.also the stability has been investigated and is found that trian-
gular points are stable if eccentricity satisfies the defined condi-
tion represented by (4.20) and the mass ratio obeys (4.22) where

u* depends on effects of the parameters involved. It is further

observed that all the parameters affect the stability as follows:

1) The region of stability decreases with the increase in the radia-
tion pressure, (Figs 1-5)when |o; — o,| and |of — g,| are
grater than Zero, it is desterilizing effects (Figs 6-10).

2) When |g; — 05| =0 and o] — g, | = 0 that is when the pri-
maries are perfectly spherical then radiation predominates.

0.0 T T T

N | 1 1 | | 1
0 ol 02 03 04 05 06 07

L]
Fig.1:Transition Curves in u* and e for o; = 0.003 to 0.009, o, = 0.0002,
g; =0.0007,0; = 0.0004,¢; =0.0001,¢, = 0.0002.
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Fig.2: Transition Curves in u* and e for g; = 0.005,0, = 0.003 to 0.009,
g; = 0.0007 ,0;, = 0.0004,¢; = 0.0001 ,e;, = 0.0002.
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Fig.3:Transition Curves in u* and e for g; = 0.0005, g, = 0.0002, o; =
0.003 to 0.009,0; = 0.0004,e; =0.0001,¢;, = 0.0002.
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Fig.4:Transition Curves in p* and e for g, = 0.0005, ¢, = 0.0002,
o; =0.0007,03 = 0.0004,e; = 0.003 to 0.009,e; = 0.0002.

0.0 T T T T T T

b3
1
o

0.0

0015

oo

s | | | | | |
0 [l 02 03 od 0% 06 a7

(2]
Fig.5:Transition Curves in u* and e for o; = 0.0005,0, = 0.0002, 0} =
0.0007 ,0;, = 0.0004,e; = 0.00001,e;, = 0.003 to 0.009.
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