
 
Copyright © 2015 A.Narayan et al. This is an open access article distributed under the Creative Commons Attribution License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 
 

 

International Journal of Advanced Astronomy, 3 (1) (2015) 8-16 
 

International Journal of Advanced Astronomy 
 

Journal home page: www.sciencepubco.com/index.php/IJAA  
doi: 10.14419/ijaa.v3i1.4074 

Research Paper  
 

 

 

Characteristics exponents of the triangular solution in the  

elliptical restricted three body problem under the  

radiation and oblateness of primaries 
 

A.Narayan 
1
*, Amit Shrivastava 

2
, B. Ishwar 

3
 

 
1 Department of Mathematics, Bhilai Institute of Technology, Durg,491001,India 

2 Department of Mathematics, Rungta College of Engg. & Tech.,Bhilai-490020, India 
3 Department of Mathematics, B.R.A. Bihar University, Muzaffarpur-842001, India  

*Corresponding author E-mail: ashutoshmaths.narayan@gmail.com 

 

 

Abstract 
 

This paper studies effects of the oblateness and radiation of both the primaries on the stability of the infinitesimal motion about trian-

gular equilibrium points (L4,5) in the elliptical restricted three body problem (ER3BP) around the binary system We have exploited 

analytical method for determining of characteristics exponent to the variational equations with periodic coefficients, developed by 

Bennet (! 965b), which is based on the Floquet's theory. The stability of the infinitesimal motion about the triangular points under the 

effects of radiation and oblateness of both the primaries around the binary systems Achird, Luyten726-8, Kruger 60, Alpha Centauri 

AB and Xi Bootis, has been studied. The stability of infinitesimal around the triangular points has been studied based on the analyti-

cal and numerical exploration is simulated by drawing transition curves bounding the region of stability in the (μ-e) plane. The region 

of stability changed with variations in eccentricity, oblateness and radiation pressures. It is observed that the equilibrium points stable 

in the shaded portion of the transition curve, whereas unstable outside the region of the transition curves. 

 
Keywords: Elliptical Restricted Three Body Problem; Stability; Radiation; Oblateness; Binary System. 

 

1. Introduction 

The present paper is devoted to the analysis of the effects of the 

radiation and oblateness of both the primaries on the stability in-

finitesimal about the triangular equilibrium points of the planar 

ER3BP around the binary system. The ER3BP is a generalization 

of the classical problem. The eccentricity of the orbits plays a 

significant role which might not be seen in the circular case. The 

orbits of most celestial bodies are elliptical rather than the circular 

as such, the ER3BP describes the dynamical system more accu-

rately.. We investigated the stability of triangular equilibrium 

points under the effects of the radiation and oblateness of both the 

primaries by exploiting analytical method for determining the 

characteristic exponents, which is based on the Floquet's theory.  

The bodies of the elliptical restricted three body problem are gen-

erally considered to be spherical in shape, but in actual situations, 

it is observed that several heavenly bodies are either oblate sphe-

roid or triaxial rigid bodies. The planets (Earth, Jupiter and Saturn) 

and stars (Archerner, Achird, Antares, Altair, Luyten etc.) are 

sufficiently oblate and are very significant in the study of celestial 

and stellar systems. The lacks of spherity of the heavenly bodies 

causes large perturbation. In addition to oblateness of heavenly 

body’s triaxiality, the radiation forces of the bodies, the atmos-

pheric drag and the solar wind are also caused of perturbation. 

This motivates our study, the stability of triangular equilibrium 

points under the influence of oblateness and radiation of the pri 

 

 

 

maries in the elliptical restricted three body problem around the 

binary system. 

The linear stability of the triangular equilibrium points of the 

ER3BP has been studied thoroughly by Danby (1964), Bennet 

(1965), Tschouner (1971), Roberts (1973), Meire (1981), 

Gyorgrey (1985), Kumar and Choudhary (1990), Khasan (1990, 

1996), Markellos et al. (1992) with highlighting the transition 

curve separating region of stability in the (μ-e) plane. Conxita 

(1995), Jefferys (1965-1966), Selaru (1995) and Zsoft and Erdi 

(2003) have studied the different aspects of the same problem. 

Balint Erdi (2009) studied the parametric resonance stability 

around L4 in the ER3BP. 

The influence of eccentricity of the orbits of the primaries with or 

without radiation pressure(s) on the existence of the equilibrium 

points and their stability was studied by Zimvoschikov and Thakai 

(2004), Markeev (2005), Ammar (2008). The influence of the 

eccentricity with oblateness and radiation parameters on the loca-

tion and stability of collinear and triangular equilibrium points has 

been investigated by Narayan and Ramesh (2011-2012), Narayan 

and shrivastava (2012) and Jagadish and Umer (2012). Recently 

the linear stability of the triangular equilibrium points of the 

ER3BP has been studied by Narayan and Singh (2014a,2014b) 

and Narayan and Usha (2014). 

The present study is devoted to the analysis of the stability of tri-

angular points under radiating and oblate primaries by exploiting 

the analytical techniques developed by Bennet (1965). This meth-

od is mainly based on the Floquet’s theory for a system with peri-

odic coefficients. 
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This paper is organized in five sections, section-1 describes intro-

duction, section -2 provides the equations of motion, while sec-

tion-3 describes the calculation of characteristic exponents and 

section-4 provides the graphical representation of transition 

curves, which are divided into stable and unstable regions. The 

discussion and conclusion are drawn in section-5.  

2. Equations of motion 

The differential equations of motion for the elliptical restricted 

three body problem under the oblate and radiating primaries in 

barycentric, pulsating and non-dimensional coordinates are repre-

sented (Jagadish and Umer, (2012) )as : 

* * *
2 ' , 2 ,x y y x zx y z                                           (2.1) 
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where 2
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m

m m
 


 

where 1m and 2m  are the masses of the bigger and smaller pri-

maries situated at the point ( , , ), 1,2,ix i 0 0  1q  and 2q  are 

the mass radiation factor; 1 2,A A are the oblateness parameter of 

the primaries; , ( 1,2)ir i  are the distances of the infinitesimal 

mass from the bigger and smaller primaries respectively; while a 

and e are respectively the semi- major axis and eccentricity of the 

orbits. 

The co-ordinate of triangular equilibrium point is represented 

(Jagadish and Umer (2012)) as: 
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            (2.5) 

In order to investigate the stability of the infinitesimal equilibrium 

point (2.5) in the first approximation, we derived the equations for 

the variation in the coordinates. 

Let  ,   denote the small displacement in  0 0,x y ; 

Then  

0x x  
 0y y  

                                                        (2.6)
 

Differentiating these with respect to v, we get; 

x   ; x    And y  
;
 

where  

   , ,0 0x y x yx x x        
                                   (2.7)

 

Expanding equation (2.7) by Taylor’s theorem and retaining only 

upto the first order terms in the infinitesimal   and , we get: 

0 0 0
x x xx xy      

 

and
0 0 0

y y yx yy                                                        
(2.8)

 

where 
0
x  and 

0
y  are the values of x  and y  at the equi-

librium point  0 0x y  which is given by (2.5). 

At the equilibrium point  0 0x y  we have: 

0 0
0x y   

                                                                            (2.9)
 

Hence, the set of equation (2.1) with the help (2.8) and (2.9) is 

reduced to the following form: 

 0 0
2 xx xy         ; 

 0 0
2 xy yy                                                             

(2.10)
 

Differentiating partially   with respect to x  and ,y evaluating 

xx , xy and yy  at the equilibrium point  0 0x y  given by 

(2.5), which is obtained (Jagadish and Umer (2012)) as given be-

low: 
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We have investigated the stability of triangular equilibrium points 

under the radiation and oblateness of primaries in the elliptical 

restricted three body problem This investigation is based on 

Floquet theory, which determines characteristic components in the 

system with periodic coefficients. The transformed variational 

equation of motion of elliptical restricted three body problem un-

der the oblate and radiating primaries  which is represented in 

matrix form, as given as: 
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 X P X                                                                               
(2.12)
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3. Determination of characteristic exponents 

In order to find solution  of variational equation of motion of the 

system, we have exploited the Floquet’s theory of determining 

characteristic exponents of the system with periodic coefficients. 

We seek the solution of the system of equation (2.12) in the form: 

kv
k kx y e


                                                                           (3.1) 

where yk is periodic with period 2π and λk are the characteristic 

exponents. Dropping the suffix in (3.1), we get: 
vx ye  

Differentiating with respect to v, we get: 
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(3.2) 

Using the equation (3.2), the variational equation of motion takes 

the form: 

 y P I y                                                                            (3.3) 

where I  is the unit matrix of the same order as that of y . 

Now, using the expressions, which are mentioned below: 
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Substituting the equation  (3.4) and (3.5) in (3.3), we get: 
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Equating the coefficients of terms with the same power of e from 

(3.9) ,both the  sides and using (3.3), we get: 
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From the equation (3.11), we have;  
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Substituting these values in the set of equations (3.10), we obtain a 

system of equations necessary for the determination of   up to 

the order of 
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(3.18) 

The relation for the exponent in the elliptical restricted three body 

problems can be obtained using the equation (3.17):
 

2
2
0

4

2

Q Q R


 


     

(3.19)  

From the first equation of the system of equation (3.14), we ob-

serve that it is necessary that the determinant of the coefficient on 

the left with any column replaced by the non-homogenous terms 

on the right must be zero.  

It is represented as follows: 

det.
   0 0,0

0 1 0I p a    
 

                                           (3.20) 

Since   enters as a factor in all elements of the replaced column, 

therefore 

1  det. 
   0 0,0

0 0I p a  
                                             

(3.21) 

Since the determinant of the equation (3.20) is not zero, in general, 

we therefore conclude that  

1 0 
                                                                               

(3.22)  

Again from the second and the third equation of (3.14), we have 

the solutions from 
   1,1 1, 1

a and a

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(3.23) 

Substituting this value of 
 1,1

a  and 
 1, 1

a


from (3.23) in the last 

equation of (3.14),we get; 
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     (3.24) 

The matrices within the square bracket are complex conjugate so 

that only the real parts are considered, then equation (3.14) can be 

written as: 

    
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            (3.25) 

After some mathematical manipulations, we from (3.25) obtained 

the value of 2 , given by 
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(3.26) 

where 
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Using this value of  
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We find the value of the parameter A, which is calculated as men-

tioned below; 

Hence, 
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 
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2 2
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2 2
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Thus 2 0A 
                                                               

(3.29) 

where A is given by the equation (3.28). Hence the solution of this 

system becomes: 
2

0 2e      (3.30)  

where 2  is given by this equation (3.29). 

4. Transition curves separating stable and un-

stable regions 

The transition curves separating stable and unstable regions, 

which describes the stability of the triangular equilibrium points in 

the elliptical restricted three body problem under the stable prima-

ries, can be found by simply equating the expression for the char-

acteristic roots or exponents to the value of periodic solutions. In 

the range
1

0
2

  , the periodic solution provides 

*

2

i
    (4.1)  

Replacing   by 
*  in (3.30), we obtain: 

2
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i
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i
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Squaring both sides we obtain: 
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(4.2) 

Now evaluating the values of A from the equation (3.28), and 

those of 
2
0  from (3.19), we evaluate e  easily for different val-

ues of  . 

The dependence of   upon e  given by equation (4.2) is shown 

in graph for various values of oblateness parameters 1A  and 2A . 

The triangular equilibrium points L4, and L5 are stable in the shad-

ed region, whereas the region outside the shaded portion is unsta-

ble. The Fig 1, Fig2 and Fig 3 are depicting the stable and unstable 

region for the binary system Achird, similarly the  Fig.4, Fig.5 

Fig.6 are representing for Luyten, Fig.7, Fig.8 Fig.9  are represent-

ing for Alpha Cen-AB, Fig.10 Fig.11, Fig.12 are representing for 

Kruger-60 and , Fig.13 Fig.14, Fig.15 are representing  for Xi-

Booties. 

The combined effects of the oblateness and radiation of the prima-

ries around the binary system, introduced a visible left shift in the 

bifurcation points in each of the binary systems. 

  
Fig. 1: Transition Curve of Achird-I 

 

 
Fig. 2: Transition Curve of Achird-II 

 

 
Fig. 3: Transition Curve of Achird-III 
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Fig. 4: Transition Curve of Luyten-I 

 

 
Fig. 5: Transition Curve of Luyten-II 

 

  
Fig. 6: Transition Curve of Luyten-III 

  
Fig. 7: Transition Curve of Alphan Cen-AB-I 

 

 
Fig. 8: Transition Curve of Alpha Cen-AB-II 

 

 
Fig. 9: Transition Curve of Alpha Cen-AB-III 
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Fig. 10: Transition Curve of Kruger 60-I 

 

 
Fig. 11: Transition Curve of Kuger 60-II 

 

  
Fig. 12: Transition Curve of Kruger 60-III 

 

 
Fig. 13: Transition Curve of Xi Booties-I 

 

  
Fig. 14: Transition Curve of Xi Booties-II 

 

 
Fig. 15: Transition Curve of Xi Booties-III 

5. Discussion and conclusion 

The effects of oblateness and radiation of the primaries on the 

stability of the triangular equilibrium points around the binary 

system in the elliptical restricted three body problem has been 

studied. The problem is studied under the assumption that the 

eccentricity of the orbit of the gravitating bodies is small. The 

oblateness and radiation of the more massive primary does not 

affect the motion of the smaller primary due its large mass, where-

as affects the motion of infinitesimal body. 
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The stability of triangular equilibrium points in the elliptical re-

stricted three body problem under the oblate and radiating prima-

ries around the binary system has been investigated. We have 

exploited an analytical method for determining of characteristic 

exponent based on the Floquet's theory. The stability of the trian-

gular equilibrium points under the effects of the radiation and 

oblateness of both the primaries around the binary system Achird, 

Luyten, Alpha Cen-AB, Kruger 60 and Xi-Bootis, has been stud-

ied, using simulation technique by drawing transition curves.  

It is observed that the triangular equilibrium points remains stable 

in the shaded region of the traced transition curves and unstable in 

the region outside the shaded portion, around the binary system. 

 

 
Fig. 16: Shifting Of Bifercation Point for Achird 

 

 
Fig. 17: Shifting of Bifurcation Point for Luyten 

 

   
Fig. 18: Shiftinf of Bifurcation Point Foralpha Cen-AB 

 
Fig. 19: Shifting of Bifurcation Point for Kruger-60 

 

 
Fig. 20: Shifting of Bifurcation Point for xi-Booties 

 

It is also observed that there is a visible left shift in the bifurcation 

points in each of the binary system and visible right shift is due to 

the effects of oblateness of the primaries around the binary sys-

tem, which is obvious from the fig.16, fig.17, fig.18, fig.19 and 

fig.20. Hence we arrived at the conclusion that the effects of 

oblateness and radiation of the primaries around the binary system 

responsible for right shift of bifurcation points. 

References  

[1] Ammar M. K (20008). “The effect of solar radiation pressure on the 

Lagrangian points in the elliptic restricted three body problems” 
Astrophys, space sci. Vol. 313, pp.393-408, 

http://dx.doi.org/10.1007/s10509-007-9709-z. 

[2] Bennett, A. (1965). Characteristic Exponent of the five equilibrium 
solutions in the elliptically restricted problems. Icarus. 4:177-187. 

http://dx.doi.org/10.1016/0019-1035(65)90060-6. 

[3] Conxita Pinyol, (1995) “Ejection collision orbits with the more 
massive primary in the planar elliptic restricted three body problem” 

Celest - Mech and Dyn Astro. Vol.-61,pp.315-331, 

[4] Danby J.M.A.(1964) “Stability of the triangular points in elliptic 
restricted problem of three bodies”,The Astronomical Journal, vol. – 

69, pp. 165-172,  

[5] Erdi, B., Dajka, E.F., Nagy, I. and Rajnai, R. (2009). A parametric 
study of stability and resonances around L4 in the elliptical restrict-

ed three body problem. Celestial Mechanics and Dynamical Astron-

omy. DOI 1007/10569-009-9197-2. 
[6] Gyorgrey J., (1985). “On the non-linear stability of motion’s around 

L5 in the elliptic restricted problem of the three bodies”, Celestial 

Mech., Dyn.Astro., vol. 36, no.-3, pp.281-285 
[7] Khasan S.N. (1990) “Three dimensional periodic solutions to the 

radiational Hill problem” Cosmic research” Vol.34, no.5, pp.299-

317. 

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

µ 

e 

  

  

A1=0 
A2=0 

A1=0.01 
A2=0.02 

A1=0.1 
A2=0.2 

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

µ 

e 

A1=0 
A2=0 

A1=0.01 
A2=0.02 

A1=0.1 
A2=0.2 

0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

µ 

e 

A1=0 
A2=0 

A1=0.01 
A2=0.02 

A1=0.1 
A2=0.2 

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

µ 

e 

A1=0 
A2=0 

A1=0.01 
A2=0.02 

A1=0.1 
A2=0.2 

0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11 0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

e 

µ 

A1=0 
A2=0 

A1=0.01 
A2=0.02 

A1=0.1 
A2=0.2 

http://dx.doi.org/10.1007/s10509-007-9709-z
http://dx.doi.org/10.1016/0019-1035(65)90060-6


16 International Journal of Advanced Astronomy 

 
[8] Khasan S.N, (1996)“Liberation Solutions to the radiational restricted 

three body problem”, Cosmic research” vol.34, no.-2, pp.146-151 

[9] Kumar V. and Choudhary R.K. (1990) “Nonlinear stability of the 

triangular libration points for the photogravitational elliptic restrict-

ed problem of three bodies”, celestial Mech. and Dyn. Astro. Vol. 48, 

no. 4, pp. 299-317,  
[10] Markeev A.P., (1978) “Libration points in celestial mechanics and 

cosmodynamics”, Nauk Moscow,  

[11] Markeev A.P. (2005) “One special case of parametric resonance in 
problem of celestial mechanics” Astronomy letter vol 31, No. 5, pp. 

300-356, 2005. http://dx.doi.org/10.1134/1.1922534. 
[12] Markellos V.V., Papadakis K.E. and Perdios E.A. (1996). “Non-

linear stability zones around triangular equilibria in the plane circu-

lar restricted three body problem with oblateness” Astrophysics and 
space science, vol.245.issue 1, pp 157-164). 

http://dx.doi.org/10.1007/BF00637811. 

[13] Markellos V.V., Perdios, E. and Labropoulou P. (1992). “Linear 
Stability of the triangular equilibrium points in the radiational ellip-

tical restricted problem” J: Astrophysics and Space Science,: pp. 

207-213.  
[14] Meire R. (1981) “The stability of the triangular points in the ellipti-

cal restricted problem.” Celestial Mechanics, Vol-23, pp. 89-95. 

http://dx.doi.org/10.1007/BF01228547. 

[15] Narayan A. and Shrivastava Amit , (2012). “Effects of oblateness 

and radiation of primaries on the equilibrium points in the ellipted 

restricted three body problems.” International Journal of Mathemati-
cal Science, Vol. 32, issue-10, pp. 330-345,  

[16] Narayan A. and Shrivastava Amit: “Existence of Resonance Stabil-

ity of Triangular Equilibrium Points in Circular Case of the Planar 
Elliptical Restricted Three-Body Problem under the Oblate and Ra-

diating Primaries around the Binary System” Advances in Astrono-

my; doi.org/10.1155/2014/287174(2014). 
[17] Narayan A. and Singh N. (2014): “Motion and stability of triangular 

equilibrium points in elliptical restricted three body problem under 

the radiating primaries” Astrophysics Space sci. 
DOI10.1007/s.10509-014-1903-I. 

[18] Narayan A. and Usha T (2014): “Effects of radiation and triaxiality 

of primaries on triangular equilibrium points in elliptic restricted 
three body problem” Astrophysics Space sci. DOI10.1007/s.10509-

014-1818-x. 

[19] Sandoor   Zsoft and B. Erdi, (2003) “Sympletic mapping for the 
Trojan-type motion in the elliptic restricted three body problem”, 

Celest Mech and Dyn. Astro. vol. 86, pp.-301-319, 2003. 

[20] Schauner T. (1971) “Die Bevegung in der Nach der Dreieckspu 
mkte des elliptischen eingeschrinkten Dreikorpen problems”. Celest. 

Mech.3, pp. 189-196, 1971. http://dx.doi.org/10.1007/BF01228032. 

[21] Selaru D and Cucu-Dumitrescu C (1995). “Infinitesimal orbit around 
Lagrange points in the elliptic restricted three body problem”, Celest. 

Mech.  Dyn. Astron. Vol. 61, no. 4, pp. 333-346, 1995. 

http://dx.doi.org/10.1007/BF00049514. 
[22] Singh Jagdish and Umar Aishetu(2012) “On the stability of triangu-

lar points in the elliptical R3BP under the radiating and oblate pri-

maries.” Astrophys Space Science DOI 10.1007/s10509-012-1109-3. 
http://dx.doi.org/10.1007/s10509-012-1109-3. 

[23] Zimvoschikov A.S. And Thakai V.N. (2004) “Instability of libration 

points and resonance phenomena in the photogravitaional in the el-
liptical restricted three body problem.”Solar system Research, 38(2), 

155-4. http://dx.doi.org/10.1023/B:SOLS.0000022826.31475. 

 

http://dx.doi.org/10.1134/1.1922534
http://dx.doi.org/10.1007/BF00637811
http://dx.doi.org/10.1007/BF01228547
http://dx.doi.org/10.1007/BF01228032
http://dx.doi.org/10.1007/BF00049514
http://dx.doi.org/10.1007/s10509-012-1109-3
http://dx.doi.org/10.1023/B:SOLS.0000022826.31475.a7

