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Abstract 
 

Parametric resonance driven oscillations of a dumbbell satellite in elliptical orbit in central gravitational field of force under the com-

bined effects of perturbing forces Earth Magnetic field and Oblateness of the Earth has been studied. The system comprises of two 

satellite connected by a light, flexible and inextensible cable, moves like a dumbbell satellite in elliptical orbit, in central gravitational 

field of force. The gravitational field of the Earth is the main force governing the motion and magnetic field of the Earth and 

Oblateness of the Earth are considered to be perturbing forces, disturbing in nature. Non-linear oscillations of dumbbell satellite 

about the equilibrium position in the neighborhood of parametric resonance 
1

2
  , under the influence of perturbing forces, which 

is suitable for exploiting the asymptotic methods of Bogoliubov, Krilov and Metropoloskey has been studied, considering ‘e’ to be a 

small parameter. The Hamiltonian has been constructed for the problem and phase analysis has been applied to investigate the stabil-

ity of the system. 
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1. Introduction 

This paper is devoted to the analysis of non-linear parametric res-

onance driven oscillations of cable connected satellites system in 

elliptical orbit connected by a light, flexible and inextensible cable 

moving in the central gravitational field of the Earth under the 

combined effects of the Earth magnetic field and Oblateness of the 

Earth. The satellites are considered to be charged material particle 

and the motion of the system is studied relative to their centre of 

mass, under the assumption that the later moves along elliptical 

orbit. The cable connecting the two satellites is taut and non-

elastic in nature such that, the system moves like a dumbbell satel-

lite. Many space configurations of cable connected satellite system 

have been proposed and analysed by different authors like two 

satellite are connected by a rod (Celletti et al 2008), two or more 

satellites are connected by a tether (M. Krupa et al 2000 & 2006), 

(Beletsky & Levin 1993), (Mishra & Modi 1982). All these au-

thors have mentioned numerous important applications of system 

and stability of relative equilibrium, if the system moves in a cir-

cular and elliptical orbit. (Beletsky & Novikova 1969), studied the 

motion of a system of two satellite connected by a light, flexible 

and inextensible string in the central gravitational field of force 

relative to their centre of mass, which is itself assumed to more 

along a Keplerian elliptical orbit under the assumption that the two 

satellite are moving in the plane of the centre of mass. The same 

problem in its general form, was further investigated (Singh 1971,  

 

1973), these works conducted the analysis of relative motion of 

the system for the elliptical orbit of the centre of mass in the two 

dimensional as well as three dimensional cases. (Narayan & Singh 

1987, 1990, 1992), studied non-linear oscillations due to solar 

radiation pressure of the centre of mass of the system moves along 

an elliptical orbit.  

The different aspects of the problem of stability of satellites in low 

and high altitude orbit with different perturbation forces are stud-

ied by many scientists, (Sharma & Narayan 2001,2002), (Singh et 

al 1971,1973,1997), (Das et al 1976), and (Narayan et al 

1987,1990,1992). Special references are mentioned (Sarychev et 

al 2000, 2007) studied the problem determining all equilibria of a 

satellite subject to gravitational and aerodynamic torque in circular 

orbit. All bifurcation values of the parameter corresponding to 

qualitative changes of stability domain are determined. (Palacian 

2007), studied the dynamics of a satellites orbiting are Earth like 

planet at low altitude orbit and perturbation is caused by inhomo-

geneous potential due to the Earth. (Langbort 2002), studied bifur-

cation of relative equilibria in the main problem of artificial satel-

lite theory for a prolate body. (Markeev et al 2003), studied the 

planar oscillation of a satellite in a circular orbit. (Ayub Khan et al 

2011), investigated chaotic motion in problem of dumbbell satel-

lite. 

The present paper deals with the non-linear parametric driven 

oscillation of dumbbell satellite in elliptical orbit under the com-

bined effects of magnetic field of the Earth and oblateness of the 
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Earth. The perturbing forces due to Earth magnetic field results 

from the interaction between space craft’s residual magnetic field 

and the geomagnetic field. The perturbing force is arising due to 

magnetic moments, eddy current and hysteresis, out of these the 

space craft magnetic moment is usually the dominant source of 

disturbing effects. 

2. Equation of motion 

The combined effects of the geomagnetic field and Oblateness of 

the Earth on the motion and stability of the satellite connected by a 

light, flexible and inextensible cable, under the influence of the 

central gravitational field of the Earth have been considered. The 

analysis of Evolutional and Non-evolutional motion of dumbell 

satellite in elliptical orbit has been restricted to two  

Dimensional case, we have assumed that the satellites are moving 

in the orbital plane of the centre of mass of the system. The mo-

tion and stability of cable connected satellite system under the 

effects of Earth’s magnetic field, (Das et al 1976), (Narayan et al 

2004), and combined effects of Earth magnetic field and 

oblateness of the Earth, (Narayan and Pandey 2010), in elliptical 

and in low altitude orbit has been studied. The equation of two 

dimensional motion of one of the satellite under the rotating frame 

of reference in (Nechville’s 1926) co-ordinate system, relative to 

their centre of mass, which moves along equatorial orbit under the 

combined influence of the Earth magnetic field and Oblateness of 

the Earth can be represented in (2.1) : 

2

4
2 3 cos

2 cos .

Ax B
x y x x

Ay B
y x y





  
 


 

 

     


    

                          (2.1) 

 
Fig. 1: Rotating Frame of Reference 

 

Here x  axis is in the direction of position vector joining the 

centre of mass of the system and the attracting centre and the y 

axis is along the normal to the position vector in the orbital plane 

of the centre of mass in the direction of the motion of the satellite

1m  where A is the Oblateness due to the Earth and B is the mag-

netic field of the Earth.  

Moreover:  
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The dipole of the Earth has its axis inclined from the polar axis of 

the Earth by a value of 110 4 . The angle  and  completely 

define the position of ek , unit vector along the axis of magnetic 

dipole of the Earth. 

In this case the condition for constrained is given by the in equali-

ty: 

2 2

2

1
,x y


                                                                      (2.3) 

 

 
Fig. 2: Orientation of ek  

 

Where  denotes Lagrange’s multiplier and  denotes product of 

the gravitational constant and the mass of the Earth, where: 

i
1
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 On the mass-

es 1m and 2m , where v is the true anomaly of the centre of mass 

of the system in elliptical orbit. 

And 
1

, ;
1 cos v
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p e
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Where P  and e  are the focal parameter and the eccentricity of 

the orbit of the centre of mass. In equation  2.1 , the prime de-

notes differentiation with respect to v. When the motion of the 

satellite 1m  of the system is determined with the help of equation 

(2.1), the motion of the satellite 2m  is easily determined with the 

help of identity. 

1 1 2 2 0m m                                                                      (2.4) 

Where 1
r

 and 2
r

are the radius vectors of the satellites of mass-

es 1m and 2m  respectively with respect to the centre of mass of 

the system. 

Obviously, the actual motion of the system will be combination of 

three types of motion. 

i) Free motion, i.e., 0.    

ii) Constrained motion, i.e., 0.   

iii) Evolutional motion (the combination of free and constrained 

motion). 

We only interested in the constrained motion because free motion 

are bound to be converted into constrained motion with the lapse 

of time. In case of constrained motion the equality sign holds in 

the equation (2.3), i.e.; the particle is moving along the circle of 

variable radius given by: 

2 2

2

1
.x y


 

 

 

In order to discuss the non-linear planar oscillations of the system, 

we transform the equation (2.1), into polar form by substituting: 

 1 cos v cos , ;x e     1 cos v sin .y e                 (2.5) 

Where   is the angular deviation of the line joining the satellite 

with the stable position of equilibrium? Solving with respect to  

and  ; we obtain:  
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 
2

1 cos v 2 sin 3sin cos

5 (1 cos ) sin .cos

e e
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The equation  2.6  is the equation of motion of a dumbbell satel-

lite in the central gravitational field of the Earth under the influ-

ence of the Earth magnetic field and oblateness of the Earth. The 

equation determining the Lagrange’s multiplier is given by: 
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(2.7) the non-linear oscillations described by  2.6
,
 take place as 

long as inequality given below is satisfied. 
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Where v and e are respectively true anomaly of the centre of mass 

of the system and the eccentricity of the orbit of the system. The 

prime denotes differentiation with respect to true anomaly v. The 

system of equation  2.1
,
 oscillates about the stable position of 

equilibrium in which it lies wholly along the radius vector joining 

the centre of mass and the centre of force Narayan et al [18], [19], 

[20]. Substituting 2  , the equation  2.1  can be expressed as 

follows: 
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 Equation  2.9 describes non-linear oscillations of the system in 

elliptical orbit in the central gravitational field of the oblateness of 

the Earth together with the Earth magnetic field.  

3. Non-linear non-resonance oscillations of the 

system about the position of equilibrium for 

small eccentricity 

The non-linear oscillations of the system of cable-connected satel-

lites under the influence of above mentioned forces described by 

equation  2.9  will be investigated for non-resonance cases.  
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In the equation (3.1),
2 3  , and 

2

,
e




 
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 

Moreover the non-

linearity  sin ,  will be assumed to be the order of e.  

The system described by equation (3.1), moves under the forced 

vibration due to the presence of the magnetic field of the Earth and 

oblaeness of the Earth. We are benefited of the smallness of the 

eccentricity ‘e’ in equation (3.1), and hence solution may be ob-

tained by exploiting the Bogoliubov, Krilov and Mitropolskey 

method (1961). For e = 0, the generating solutions of zeroth order 

are: 

cos ; va        . 

Where the amplitude ‘a’ and phase 
 are constant, which can be 

determined by the initial conditions. The solution of equations 

(3.1) is obtained in the form: 

   2
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              (3.2)
 

Where the amplitude ‘a’ and phase ' '  are determined by the 

differential equations.  
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From (3.2), we find 
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d
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Using Fourier expansion given by 
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Where , 01,2,3........kJ k   stands for Bessel’s function. Substi-

tuting these values in equation (3.5) and determining  1A a  and 

 1B a  in such a way as  1 , , v ,u a  should not contain reso-

nance terms and hence, equating the coefficients of sin  and 

cos  to zero, separately, we obtain: 
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With the help of the equation (3.8) it is not difficult to obtain

 1 , ,u a v  in the form: 
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In order to obtain the second approximation of the solution, we 

need to determine  2A a and  2 ,B a and  1 , , vu a   as ob-

tained in (3.8) and (3.9), in equation (3.6), and equating the coeffi-

cients of sin and cos  to zero with a view to eliminate reso-

nance terms from  2 , , vu a  , we obtain: 
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Thus, in the second approximation, the solution is given by: 

1cos ( , , );a eu a v                                                        (3.11) 

Where the amplitude ‘a’ and phase ‘ ’ are given by: 
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And in the second approximation the solution is obtained as: 
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Where the amplitude ‘a’ and phase ' ' are given by:  
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*v     Where 
*  is constant. 

From the above solution, we concluded that amplitude ‘a’ remain 

constant up to the order of the square of the eccentricity. The 

phase of the oscillations of the system in this case of non-linear, 

non-resonance oscillations varies with respect to true anomaly. 

However the variation of the phase is of the order of the square of 

the eccentricity, which is a small quantity. We arrived at the con-

clusion that the system has main resonance at 1   , and para-

metric resonances at
1

2
   ,

1

4
    for these values of , 

the solution fails as we get singularity. The parametric resonance 

at 
1

4
  

 

arises due to non-linearity condition. 

4. Non-linear parametric driven oscillations of 

dumbell satellite system about the position 

of equilibrium for small eccentricity 

The non-linear oscillations of the dumbell satellite under the influ-

ence of the above mentioned 

Forces described by (2.3), will be investigated for the parametric 

resonance case on the assumption 

That magnetic field parameter is of the order ‘e’ then, equation 

(2.3), can be put in the form: 

2

( sin ) 2 sin ν 4sin

cos ν 2 cos sin 5 sin
2

e
B A

    

   
  

   
   
   
 

 

2 10 cos sin 2 cos sin( ) .
2

e A v B


  
 

   
                       (4.1)

 

Where
2 3  , and 

2

.
e




 
   
 

 More over the non-linearity 

term  sin 
,
will be assumed to be the order of e. 

The system described by equation (4.1), moves under the forced 

vibration due to the presence  of the magnetic field of the earth 

and oblateness of the earth. this periodic sine force of erturbative 

nature as long as the period of oscillations of the system is differ-

ent from the period of sine force for which solution is obtains. as 

the period of sine force is always changing, it may become equal 

to the sine force, in that case the periodic sine force plays vital role 

in the oscillatory motion of the system. while examining the non-

resonance case, we conclude that the system experience paramet-

ric resonance behavior at and near 
1

,
2

  and hence the non-

resonance  solution fails. we are benefitted of the smallness of the 

eccentricity ‘e’ in equation (3.1), and hence the solution of the 

differential equation may be obtained by exploiting the 

bogoliubov, krilov and  metropoloskey method.we constructs the 

asymptotic solutions of the system representing (4.1), in the most 
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general case, which is valid at and near the main resonance
1

2
  , 

exploiting the well known bogoliubov, krilov and metropoloskey, 

method. the solution of equation (4.1), in the first approximation 

will be sought in the form: 

cos( );
2

a


                                                                      (4.2) 

 1 , ;
v

da
e A a

d
                                                                     (4.3) 

 1

1
( ) ,

v 2

d
e B a

d


                                                        (4.4) 

Where  1 ,A a   and  1 ,B a   are particular solution periodic 

with respect to ‘ ’ of the system. 

 

21
1 2

2 2
2

0 0

1 1
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2 2

, , , cos v

i

i
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a B e

f a e k d dk


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

 


 
 

  








 
   

 

 



 

 ;                       (4.5) 

 
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2
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, , , sin v .

i

i

B
a A e

f a e k d dk
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 
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  





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 
    

 

 



 

 

Where 
2

k


      and  , , ,f a    
, 

is the coefficient of 

‘e’ on the right hand side of equation (3.1).  

Where 

   , , , [ sin 2 sin v 4sin v

cos v 2 cos sin 5 sin ] .
2

f a e

B A

      


  

     

   

 
Simple integration gives us: 

  

 

1
1 1

1 1

1
2 2

2

10 4 cos cos 2 ;
2 2

A
a B a J a

a a
AJ a B J

  


 

 
    

 

 
   

 

 

1
1

1
( ) 2 sin 2 .

2 2

B a
a A  




  

                                         

(4.6) 

Where  1J a  is the Bessel function of the first order? 

        2 1

0

sin cos 2 1 cos 2 1 ;
n

n

n

a J a n 






            (4.7) 

       0 2

0

cos cos 2 1 cos 2 .
n

n

n

a J a J a n 




      

Where , 01,2,3........nJ n   stands for Bessel’s function. 

The periodic solution of the system given by equations (4.6) can 

obtain as: 

1

sin 2
;

2

a
A

 
  
 

                                                                    (4.8) 

1 1

1

1

( 2 ( ) 10 ( )
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.
2 24 cos ( )

2

a J a AJ a
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a B J

 

 

  
   
 
  

 

Where the amplitude ‘a’ and phase ‘ ’ are the given by the sys-

tem of differential equations: 

sin 2
;

v 2

da ea

d


  

1

1 1

( 2 ( ))
1

v 2 2 10 ( ) 4 cos ( )
2

cos 2
.

2

a J a
d e

a
d a AJ a B J

e

 


 



 
          

  



      (4.9) 

The system of equation can be written as: 

1
;

a H

v a 

 


 
 

1
.

H

v a a

 
 

 
                                                                      (4.10) 
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4 2

4

( 1)

2 64

cos 2 5

4 4
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 
 

 
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                                           (4.11) 

Obviously, the system of the equation (4.10) has first integral of 

the form: 

0H c   ;                                                                                 (4.12) 

This reduced the problem to quadrature. Here 0c   , is the constant 

of integration. However, it is preferable to analyse the integral 

urves in the phase plane ( , )a  . In order to plot the integral curves 

reducing the equation (4.11), in the form: 

45 cos

64 256 64

Ae eB e
a



 

 
   

 
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e Ae
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 




 
   

 
0 0C 

         (4.13)
 

Where 0 0( 1)C n C                                                              (4.14)
 

 

 
Fig. 3: Oscillation of the Dumbell Satellite in Elliptical Orbit 

 

The integral curves (4.13), have been plotted in Figure (3), for 
=0.52, e =.1, A=0.005 and B=0.001. The integral curves drawn in 

the phase plane ( , )a 
.
 Using MATLAB software 6.1 versions. It 

indicates about three zones,one is stationary,allowable and forbid-

den region and it also indicated that there exists only two station-

ary regime of the amplitude and it is stable as the integral curves 

are closed curves. 

For any other initial condition we shall obtain periodic change in 

the amplitude ‘a’, which would be bounded. But the maximum 

value of ‘a’ in this case will always be greater than its value at the 

stationary regime. 
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Therefore, for the gravity gradient stablisation of such a space 

system in elliptical orbit, we are required to bring the amplitude of 

oscillations near the stationary regime, which gives the smallest 

deflection of the system from the relative equilibrium position in 

comparison to any other regime of oscillations. 

 

 
Fig. 4: Oscillations of the Dumbell Satellite in Elliptical Orbit 

 

In the Figure (4), the integral curves for  = 0.48, e =0.1, A = 

0.005 and B = 0.001 has been plotted and it is found that the sta-

tionary regime of the amplitude ‘a’ exists in addition to allowable 

and forbidden region. In this case also there exists two stationary 

regime with a slight change in its position. Minute observation of 

the signature (3) and (4) suggested concluding that during the 

evolution of oscillations of the system as it approaches the para-

metric resonance, the stationary amplitude declines steadily with 

continuously changing phase. 

5. Conclusion 

We have discussed that the combined effects of the Earth 

Oblateness and the magnetic field of the Earth on the evolutional 

and non-evolutional motion of cable connected satellites system, 

connected by a light, flexible and inextensible cable in the central 

gravitational field of the Earth for the elliptical orbit of centre of 

mass of the system. The satellites are considered as charge materi-

al particle. The motion of each of their relative to the centre of 

mass has been studied. It is assumed that centre of mass moves 

along Keplerian orbit around oblate Earth in elliptical orbit. It is 

further assumed that satellites are subjected to absolutely non-

elastic impacts as the cable tightened. Throughout our analysis, we 

assumed that the system moves like a dumbbell satellite. We fur-

ther discussed the non-linear non-resonant and parametric reso-

nant oscillations of dumbbell satellite about the equilibrium point 

of the system in elliptical orbit. 

The equations of motion have been derived in the required form. 

The non-resonant oscillations of the problem has been studied 

with the help of Bogoliubov, Krilov and Metropoloskey, method 

when the eccentricity ‘e’ of the orbit of centre of mass has been 

taken as the small parameter for the solution of the system.We 

arrived at the conclusion that the amplitude of oscillations of the 

system remains constant up to the second order of the approxima-

tion. The phase of oscillations varies with respect to true anomaly, 

but the rate of change is the function of the square of eccentricity 

of the orbit of the centre of mass. We also come to the conclusion 

that the system experience main resonance at 1    and para-

metric resonances at 
1

2
    ,

1

4
   , up to the second order 

of approximation. We also obtained the general solution of the 

non-linear oscillatory system based upon Bogoliubov, Krilov and 

Metropoloskey method which is valid at near of the parametric 

resonance 
1

.
2

   the method of phase plane has been applied in 

order to obtain characteristic of the amplitude and the phase of the 

oscillatory system. We come to the conclusion that there exists 

two stationary stable regime of the amplitude for both 
1

2
   and

1

2
  .  

However the stationary amplitude declines steadily, when it passes 

through two values of  given by 
1

2
   and

1

2
  . 

It has also been established that the system will always move like 

a dumbbell satellite in the phase 

Plane ( , )a  under consideration. 

Thus, the oblateness of the Earth and magnetic field of the Earth 

will play important role in disturbing the attitude of the system of 

a dumbell satellite in elliptical orbit 
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