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Abstract 
 

Background: In our recent publications pertaining to 4G model of final unification and based on strong and electroweak interactions, we 

have proposed the existence of a weak fermion of rest energy 585 GeV. Objective: To confirm the physical existence of the proposed 585 

GeV weak fermion by analyzing weak and strong interactions in a unified approach via 4G model of final unification, super symmetry and 

string theory. Method: Considering the proposed nuclear charge of 2.95e, proton, electron mass ratio, specific charge ratios of proton and 

electron, Fermi’s weak coupling constant, Reduced Planck’s constant, nucleon magnetic moments, nuclear stability, nuclear binding energy, 

nuclear mass and neutron lifetime, it is planned to confirm the physical existence of the proposed 585 GeV weak fermion. Results: All 

proposed logics and formulae clearly establish the physical existence of 585 GeV weak fermion directly and indirectly. Proceeding further, 

including the Fermi’s weak coupling constant and Newtonian gravitational constant, we have developed a procedure for estimating and 

fitting the fundamental physical constants in a unified approach. Conclusion: Believing in the physical existence of the proposed 585 GeV 

weak fermion, there is a scope for observing galactic TeV radiation coming by virtue of annihilation of 585 GeV fermions and radiation 

associated with various astrophysical acceleration mechanisms of 585 GeV fermions. Appeal: As we are beginners of astrophysics domain, 

we appeal the science community to see the possibility of considering the proposed 585 GeV weak fermion with a charge of ( )e  in place 

of electron and proton. 

 
Keywords: 4G Model of Final Unification; Electroweak Fermion; Weak Interactions; Strong Interactions; Nuclear Structure; Super Symmetry; String 

Theo-Ry; Detection of Galactic Tev Radiation. 

 

1. Introduction 

It is generally believed that, electrons and nucleons are fermions and are responsible for the observed spectrum of electromagnetic radiation 

that propagates in the form of photons. At sub nuclear level, it is well established that, quarks are fermions and play a vital role in generating 

baryons and mesons. Gluons are believed to be the force carriers between quarks and hadrons. Here we would like to emphasize the point 

that, whether it is electromagnetic interaction or strong interaction, fermions are supposed to be the ‘field generators’ and photons and 

gluons are believed to be the ‘field carriers’. It is very clear to say that, ‘field generators’ and ‘field carriers’ both are essential elements in 

understanding their respective interactions and both can be considered as a representation of ‘head’ and ‘tail’ of a coin. Coin ‘without head’ 

or ‘without tail’ – is practically an ambiguous physical issue. In this context, with reference to the well believed and well understood ‘weak’ 

interaction [1], [2] – we sincerely appeal that,  

1) There is a scope for understanding weak interaction with its ‘weak field generating fermion’. 

2) There exists a ‘weak field fermion’ corresponding to the currently believed three weak bosons.  

In this context, in our recently proposed ‘4G model of final unification’ associated with three large atomic gravitational constants pertaining 

to the three atomic interactions [3-16], we have proposed the existence of a weak fermion of rest energy 585 GeV. Considering the basic 

concepts of super symmetry [17 - 19], [20-23], one can think about the possible existence of weak fermion. Here it seems important to 

mention the historical literature for the introduction of large gravitational constants by Nobel laureates and other scientists. In 1970s to 

1990s, for understanding strong interactions, K. Tenakone, J.J.Perng, K.P. Sinha, Usha Raut, C. Sivaram, V. de Sabbata, S. I. Fisenko, M. 

M. Beilinson, B. G. Umanov, Abdus Salam, J. Strathdee, E. Recami, V. Tonin-Zanchin, Sergey G. Fedosin, O.F. Akinto and Farida Tahir 

proposed the existence of nuclear gravitational constant having a very large magnitude [24-32]. Thus, we have developed our model and 

quantified the magnitude of the strong nuclear gravitational constant [33-37]. In 2013, for understanding weak interactions, Roberto Onafrio, 

proposed the existence of weak gravitational constant having a large magnitude [38], [39]. E. A. Pashitskii and V. I. Pentegov further 
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extended the subject [40]. Motivated with these large coupling constants, for understanding the electromagnetic interactions, we have 

proposed the existence of another large gravitational constant [41], [42].  

Considering our 4G model of Final unification and its 3 assumptions, in our early and recent publications we have developed many relations 

in nuclear and particle physics. In this paper, we review the key nuclear relations that help in understanding and confirming the physical 

existence of our proposed 585 GeV electroweak fermion. Proceeding further, we show the possibility of confirming the physical existence 

of 585 GeV weak fermion with reference to the observed tera electron volt (TeV) photon radiation coming from astrophysical objects.  

Starting from section 2 to section 14, directly and indirectly, we are showing different possible nuclear applications and evidences for 

understanding and confirming the physical existence of 585 GeV weak fermion. In section 15, including the Fermi’s weak coupling con-

stant and Newtonian gravitational constant, we have developed a procedure for estimating and fitting the fundamental physical constants. 

See Table 4. In section 16, we have outlined simple relations for the neutrino rest mass and neutron lifetime. In section 17, we have outlined 

the mechanism of understanding and confirming the physical existence of the proposed weak fermion via galactic tera electron volt (TeV) 

photons. We have proposed our conclusions in section 18.  

2. Three assumptions, five definitions and many applications 

Our way of approach is completely different from current models of unified physics and it may take some time for its understanding, 

implementation and review. We would like to emphasize the point that, compared to String theory [43-46], our approach is very simple, 

elegant and workable. It may be noted that, even though there is mathematical beauty and good physics towards the unification of gravity 

and atomic interactions, String theory is not able to estimate and fit the fundamental physical constants. Proceeding further, its predictions 

are beyond the scope of current engineering and technology. Roger Penrose and other scientists are very unhappy with the multiple and 

impractical solutions of String theory. In this context, readers are encouraged to visit the URL: https://www.youtube.com/watch?v=q1ub-

pGylbWs. One important aspect of our approach is to widen the scope and applicability of String theory towards the three atomic interac-

tions with testable predictions and possible experimental designs [47]. Readers are encouraged to work on the data presented in Table 1 

and Table 2.  

In our 4G model of final unification, there exist 3 assumptions, 5 definitions and many inferences. Considering the proposed assumptions 

and definitions, we have presented various applications in nuclear physics. We would like to emphasize the point that, with reference to 

the current knowledge of physics, so far, no physics model has shown such a wide range of applications in a unified approach. It may be 

noted that, as per the current notion of standard model of particle physics, weak interaction neither involves in forming particle bound 

states nor in particle binding energy scheme. An interesting point of our research is that weak interaction plays a vital role in understanding 

the origins of quantum mechanics, nuclear stability and binding energy. Weakness of our model is: 1) Lack of mathematical approach; 2) 

Missing links between the proposed relations; Here, we would like to highlight the point that understanding fundamental things in a broad 

view is not so simple and certainly beyond the scope of human thinking and imagination. We are sure that, with further research and fine 

tuning, things can be improved in a phased manner, and the four fundamental branches of physics can be understood in a better way.  

3. Three assumptions of 4G model of final unification 

Following our 4G model of final unification, we proposed the following assumptions.  

1) There exists a characteristic electroweak fermion of rest energy, 2 584.725 GeVwfM c  . It can be considered as the zygote of all ele-

mentary particles.  

2) There exists a nuclear elementary charge in such a way that, 

2

0.1151935s
n

e

e


 
  

 
  = Strong coupling constant [48,49] and 

2.946362ne e . 

3) Each atomic interaction is associated with a characteristic large gravitational coupling constant. Their fitted magnitudes are, 
37 3 -1 -2

28 3 -1 -2

22 3 -1 -2

Electromgnetic gravitational constant 2.374335 10  m kg sec

Nuclear gravitational constant 3.329561 10  m  kg sec

Electroweak gravitational constant 2.909745 10  m kg sec

e

n

w
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G
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  

  
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Note: Following the basics of QCD [48], being a ratio or dimensionless number, strong coupling constant 
s (associated with weak bosons’ 

average rest energy 85.782 GeV, approximate QCD scale energy of 300 MeV and 3 quark flavors) can be approximated as, 

( )
( ) ( )

2

22 2
0

4 4
0.12344.

ln 9 ln 85782 MeV 300 MeV
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
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 The denominator coefficient ( ) ( )0

2 2
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3 3
fn  −  −   Here in-

teresting point to be noted is that, accuracy seems to depend on the reference weak boson rest energy and the reference QCD scale energy. 

Considering the proposed 584.725 GeV weak fermion and proton of rest energy 938.272 MeV as the characteristic operating energy range, 

for 3 quark flavors, ( )
( )

2

2

4
0.108492

9 ln 584725 MeV 938.272 MeV
s Q


  



 . Average value of the strong coupling constant seems to be 

(0.1085+0.1234)/2=0.11597. It needs a review with our proposed 

2

.
n

e

e

 
 
 

   

Based on the proposed assumptions and corresponding numerical fits,  

a) Considering the ratio of Planck scale to the nuclear scale, Newtonian gravitational constant [50,51,52,53] can be fitted with, 
21 10

11 3 -1 -2

30
6.679851 10  m kg secw e

N

n

G G
G

G

−   .  
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a) On interpreting or eliminating the large numbers, neutriono rest mass [7], [54], [55] can be inferred as, 
6

5

w N e
xf wf

n p

G G m
m M

G m

  
    
   
   

. 

Thus, 47 -11 24.365 10  kg 2.45 10 eV .xfm c−     

b) Strong coupling constant [49] can be fitted with, 
6 4

10
0.115193455.w e

s

n

G G

G
    

c) Independent of system of units, Avogadro (like) large number having no dimensions [56-59] can be fitted with a simple relation of the 

form, 
31

23

20 11

Product of short range gravitational constants
6.1088144 10 .

Product of long range gravitational constants

n w n

N e w e

G G G

G G G G
     It may be noted that, in fact Avogadro number is 

having dimensions and we have developed an intersting procedure for estimting it based on nucleons’ average rest mass, averegae binding 

energy per nucleon and electron rest mass. Readers are encouraged to refer our recent research papers [6], [7], [14], [16].  

d) Neutron lifetime [7,60],[61-64] can be fitted with, 

( )

2 2

3
874.94 sec.e n

n

w n p

G m
t

G m m c
 

−
 

It seems that, outside the nucleus, neutron experi-

ences electromagnetic interaction and weak interaction helps neutron to decay into proton, electron and neutrino.  

e) Characteristic atomic radii [7], [65-70] can be addressed with 1 3 1 3

2

2
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n e U
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G G M
R A A

c
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 where A  represents the 

mass number and 2931.5 MeVUM c  represents the unified atomic mass unit. Starting from the 3rd period, 

2
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2

2
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where Z  represents the atomic number and 
fpZ  represents the atomic number of the 

first element of the period. It needs further study and fine tuning. 

f) Bohr radius of hydrogen atom can be addressed with, ( )0 2
0 2 2

4 n p

e e

G m
a G m

e c

 
  
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. Energy conservation point of view, it can be expressed 

as, 
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2 2

2
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.
4

e e

n p
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a G m c
  It may be noted that, as per the current models, there is no solid interconnection between nuclear charge radius 

and Bohr radius. 

 

4. Interaction ranges associated with the 3 atomic interactions and the scope for 4G model of 

String theory 
 

By following the above assumptions, it is possible to estimate the three atomic interaction ranges in the following way.  

Electroweak interaction range can be expressed as,  

 

19

2

2
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w wf

w

G M
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−                                                                                                                                                       (1) 

 

Nuclear interaction range can be expressed as,  

 

15
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Electromagnetic interaction range can be expressed as,  

 

10

2

2
4.813 10 me e

e

G m
R

c

−                                                                                                                                                                  (3) 

 

Here, we would like to highlight the following two points. 

1) Proposed weak interaction range, 
2

2 w wf F
G M G

cc
  where FG  is the Fermi’s weak coupling constant [1], [2], [52], [53]. 

2) String theory [43-45] can be made practical with reference to the three atomic gravitational constants associated with weak, strong and 

electromagnetic interaction gravitational constants. See Table 1. and Table 2. for sample string tensions [46] and energies without any 

coupling constants. 
Table 1: Charge Dependent String Tensions and Energies 
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Table 2: Quantum String Tensions and Energies 

5. Our 5 definitions related to final unification 

In a unified approach, we have defined 5 relations in the following way.  

 

Definition 1: Electron rest mass is defined as,  

 

 w
e wf

n

G
m M

G

 
  
 

                                                                                                                                                                                               (4) 

 

Definition 2: Proton rest mass is defined as,  
 

2

 n
p wf

e w

G
m M

G G

 
  
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                                                                                                                                                                                        (5) 

 

Definition 3: Nuclear and electromagnetic charge ratio is defined as 

 

2
n n p

e c

e G m

 
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                                                                                                                                                                                                (6) 

 

Definition 4: Product of Reduced Planck’s constant and speed of light is defined as  

 
2 w wfc G M                                                                                                                                                                                                (7) 

 

Definition 5: Ratio of forces related to proton and electron is defined as 

 
2

2
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4
4

n

n p e

e
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6. Understanding the reduced Planck’s constant and its integral nature 

Based on relation (7), the well believed quantum constant c  seems to have a deep inner meaning with reference to electroweak interaction. 

Following relation (7), there is a possibility to understand the integral nature of quantum mechanics with a relation of the form, 

( )
2

2  where 1,2,3,..
w wfG nM

n n
c

 =  Compared to large massive structures, -like living creatures- as elementary particles are having 

discrete nature, we would like to emphasize the point that, discreteness may be the root cause of quantum behavior at microscopic level. 

With reference to proton and electron rest masses, it seems possible to have different relations like,  

 

( )( )

2 2

 

  

n p w wf n wf e

n

e n p e ep ew e

n

G m G M G M me

e c c c

m G m G mm mG G

G c c

  
     
  

 
  
 
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We would like to emphasize the point that, at first, one should understand the origin of the quantum constants. Then only, one may be able 

to understand the potential consequences of the quantum constants. Integral nature, wave nature, particle nature, position and momentum 

- all these physical properties seem to be inherently connected with the generation of the quantum constant. Including string theory, current 

physical models are simply inserting the quantum constant  and trying to understand the consequences. It needs further study with refer-

ence to EPR argument and other important physical and mathematical logics [10], [71-74]. We are working in this new direction.  

7. Understanding proton-electron mass ratio 

Considering weak, nuclear and electromagnetic interactions,  
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3
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Strong coupling constant [48], [49] can be expressed as,  
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Hence, proton and electron mass ratio can be expressed as,  

 

2 2 2 2

2 2 2 2
0 0

1 31 3
2 2 2

2
0 0

4 4

4 4

p n e e n

e n p n p e e

n e n

n en

m e G m e e

m e G m G m G m

e G e e

G Ge G

 

 

   
      

  

      
            

      

                                                                                                                                             (12) 

 

In terms of specific charge ratios, 
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Here it is very interesting to note that,  
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Here ratio of rest mass of proton to the assumed electroweak fermion is equal to the ratio of mean mass of pions to the mean mass of 

electroweak bosons. Based on this unique and concrete observation, we are very confident to say that strong and weak interactions play a 

vital role in exploring the secrets of nuclear structure.  

8. Understanding the nucleon magnetic moments 

Characteristic nucleon magnetic moment having a nuclear charge of 
ne  and electromagnetic charge of e  can be expressed as, 

 

27 -1

24

8.6696 10  J.Tesla
2 2

where 1.042367 10  kg

n

X

p e wf

wf

e e e

m m M

M

 −

−

   

 

                                                                                                                         (16) 

 

Neutron magnetic moment [52,53] can be fitted with,  
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Proton magnetic moment [52], [53] can be fitted with,  
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Ratio of neutron and proton magnetic moments can be expressed as,  
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9. Understanding the fermi’s weak coupling constant 

Fermi’s weak coupling constant [1], [2], [52], [53] can be fitted with the following relations.  
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It is a very simple relation and demonstrates the confirmation of the physical existence of the proposed 585 GeV weak fermion. Obtained 

value is matching with the recommended value by 99.7%. It needs further study. In terms of electromagnetic, nuclear and gravitational 

interactions confined to a radius of 15
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10. Understanding nuclear stability associated with beta decay 

Nuclear stability means, finding stable atomic nuclides having long living time compared to other living atomic nuclides having short 

living time. By beta decay, mostly short living atomic nuclides emit electrons and positrons and transform to stable atomic nuclides. In 

general, Beta decay process is believed to be associated with weak interaction. In this context, we noticed that, starting from Z=2 to 92,  
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Here we wish to call 𝛽 as the electroweak coefficient. Thus,  
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One can find a similar relation in the literature [75]. This relation can be well tested for Z=21 to 92. For example,  
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This is one best practical and quantitative application of our proposed electroweak fermion and bosons. Following this relation and based 

on various semi empirical mass formulae, by knowing any stable mass number, its corresponding proton number can be estimated with,  
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With even-odd corrections and further study, super heavy atomic nuclides can be estimated easily. In this context, we have developed the 

following relation. 
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With even odd corrections, 

 

( )   
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  

                                                                                                                           (26) 

Here,  

1) If Z is even and obtained 
sA  is odd, then, 1.s sA A +  

2) If Z is even and obtained 
sA  is even, then, .s sA A  

3) If Z is odd and obtained 
sA  is odd, then, .s sA A  

4) If Z is odd and obtained 
sA  is even, then, 1.s sA A +  

See Table. 3 presented in the next section for the estimated light house like stable mass numbers and corresponding nuclear binding energy. 

11. Understanding nuclear binding energy 

In our recent publications pertaining to 4G model of final unification and based on strong and electroweak interactions, we have developed 

a completely new formula for estimating nuclear binding energy [76-80]. With reference to currently believed Semi Empirical Mass For-

mula (SEMF), we call our formula as ‘Strong and Electroweak Mass Formula’ (SEWMF). Our formula constitutes 4 simple terms and 

only one energy coefficient of magnitude 10.1 MeV. First term is a volume term, second term seems to be a representation of free nucleons 

associated with electroweak interaction, third term is a radial term and fourth one is an asymmetry term about the mean stable mass number. 

Considering this kind of approach, nuclear structure can be understood in terms of strong and weak interactions in a theoretical approach 

positively [1-16]. For Z=6 to 118, improved binding energy relation can be expressed as follows [14],[16]. It needs a review for its fine 

tuning. 
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Where 10.1 MeVA  represents the volume term 

10.1 MeVfreeA   represents the modified electroweak term 

10.1 MeVradialA   represents the radial term 

10.1 MeVasymA   represents the asymmetry term 
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Extrapolation point of view, there is a considerable error for very low and very high mass numbers of any Z and we are working in all 

possible ways. Close to the light house like stable mass numbers of Z=6 to 118,  
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We are working on understanding the electroweak term in various possible ways. See the following Table. 3 for the estimated binding 

energy of Z=6 to 118 with light house like mass numbers estimated from relation (26). For data comparison, we have taken the following 

advanced binding energy formula presented in reference [78].  
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In Table 3,  

As= Estimated light house like stable mass number  

EBE = Estimated binding energy in MeV  

EBEPN = Estimated binding energy per nucleon in MeV  

RBE= Reference binding energy in MeV [78] 

RBEPN = Reference binding energy per nucleon in MeV  

Diff.BE= Difference in Reference and Estimated binding energy. 

 

Based on Liquid drop model, close to beta stability line, number of free nucleons associated with nuclear volume and surface area, can be 

addressed with an approximate relation of the form,  
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Table 3:  Estimated Nuclear Binding Energy of Z=6 to 118 at Light House Like Mass Numbers 

Z A N As Afree Aradial EBE (MeV) EBEPN (MeV) RBE (MeV) RBEPN (MeV) Dif. BE (MeV) 

6 12 6 12 0.67 2.29 91.3 7.6 85.4 7.1 -5.9 

7 15 8 15 0.74 2.47 119.1 7.9 109.4 7.3 -9.7 
8 16 8 16 0.81 2.52 128.0 8.0 122.0 7.6 -5.9 

9 19 10 19 0.90 2.67 155.9 8.2 147.3 7.8 -8.6 
10 20 10 20 0.98 2.71 164.7 8.2 159.1 8.0 -5.6 

11 23 12 23 1.09 2.84 192.6 8.4 185.1 8.0 -7.5 

12 24 12 24 1.19 2.88 201.2 8.4 196.1 8.2 -5.1 
13 27 14 27 1.32 3.00 229.1 8.5 222.6 8.2 -6.5 

14 28 14 28 1.44 3.04 237.5 8.5 233.0 8.3 -4.6 

15 31 16 31 1.59 3.14 265.3 8.6 259.8 8.4 -5.5 
16 32 16 32 1.73 3.18 273.6 8.6 269.5 8.4 -4.1 

17 35 18 35 1.90 3.27 301.3 8.6 296.6 8.5 -4.7 

18 38 20 38 2.08 3.36 328.8 8.7 326.8 8.6 -2.0 
19 39 20 39 2.24 3.39 337.0 8.6 333.0 8.5 -4.0 

20 42 22 42 2.45 3.48 364.4 8.7 363.2 8.6 -1.2 

21 43 22 43 2.63 3.50 372.4 8.7 368.8 8.6 -3.5 
22 46 24 46 2.85 3.58 399.6 8.7 399.0 8.7 -0.6 

23 49 26 49 3.09 3.66 426.7 8.7 425.3 8.7 -1.4 

24 50 26 50 3.30 3.68 434.5 8.7 434.3 8.7 -0.2 
25 53 28 53 3.56 3.76 461.4 8.7 460.7 8.7 -0.8 

26 56 30 56 3.84 3.83 488.2 8.7 489.8 8.7 1.6 

27 57 30 57 4.06 3.85 495.8 8.7 495.4 8.7 -0.4 
28 60 32 60 4.36 3.92 522.4 8.7 524.5 8.7 2.0 

29 63 34 63 4.68 3.98 548.9 8.7 550.0 8.7 1.1 

30 66 36 66 5.01 4.04 575.2 8.7 578.3 8.8 3.1 
31 67 36 67 5.26 4.06 582.6 8.7 584.1 8.7 1.5 

32 70 38 70 5.61 4.12 608.7 8.7 612.2 8.7 3.5 

33 73 40 73 5.98 4.18 634.7 8.7 637.1 8.7 2.4 

34 74 40 74 6.25 4.20 641.9 8.7 645.6 8.7 3.7 

35 77 42 77 6.64 4.25 667.7 8.7 670.4 8.7 2.7 

36 80 44 80 7.05 4.31 693.3 8.7 697.7 8.7 4.4 
37 83 46 83 7.48 4.36 718.7 8.7 721.9 8.7 3.2 

38 84 46 84 7.77 4.38 725.7 8.6 730.3 8.7 4.5 

39 87 48 87 8.21 4.43 751.0 8.6 754.4 8.7 3.4 
40 90 50 90 8.67 4.48 776.1 8.6 781.0 8.7 4.9 

41 93 52 93 9.15 4.53 801.1 8.6 804.6 8.7 3.5 

42 94 52 94 9.47 4.55 807.8 8.6 812.7 8.6 4.9 
43 97 54 97 9.97 4.60 832.6 8.6 836.2 8.6 3.6 

44 100 56 100 10.49 4.64 857.2 8.6 862.2 8.6 5.0 
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45 103 58 103 11.02 4.69 881.7 8.6 885.2 8.6 3.5 

46 106 60 106 11.57 4.73 905.9 8.5 910.6 8.6 4.7 

47 107 60 107 11.91 4.75 912.4 8.5 916.0 8.6 3.5 

48 110 62 110 12.48 4.79 936.5 8.5 941.3 8.6 4.7 

49 113 64 113 13.07 4.84 960.5 8.5 963.7 8.5 3.3 
50 116 66 116 13.67 4.88 984.2 8.5 988.5 8.5 4.3 

51 119 68 119 14.29 4.92 1007.9 8.5 1010.6 8.5 2.7 

52 122 70 122 14.93 4.96 1031.3 8.5 1034.9 8.5 3.6 
53 123 70 123 15.31 4.97 1037.5 8.4 1040.2 8.5 2.7 

54 126 72 126 15.96 5.01 1060.7 8.4 1064.4 8.4 3.7 

55 129 74 129 16.64 5.05 1083.8 8.4 1085.9 8.4 2.1 
56 132 76 132 17.32 5.09 1106.8 8.4 1109.8 8.4 2.9 

57 135 78 135 18.03 5.13 1129.6 8.4 1130.9 8.4 1.3 

58 138 80 138 18.75 5.17 1152.3 8.3 1154.3 8.4 2.1 
59 141 82 141 19.48 5.21 1174.7 8.3 1175.1 8.3 0.3 

60 142 82 142 19.90 5.22 1180.5 8.3 1182.6 8.3 2.1 

61 145 84 145 20.66 5.25 1202.8 8.3 1203.3 8.3 0.5 
62 148 86 148 21.44 5.29 1224.9 8.3 1226.1 8.3 1.3 

63 151 88 151 22.22 5.33 1246.9 8.3 1246.5 8.3 -0.4 

64 154 90 154 23.03 5.36 1268.7 8.2 1269.0 8.2 0.3 
65 157 92 157 23.85 5.40 1290.3 8.2 1288.9 8.2 -1.4 

66 160 94 160 24.69 5.43 1311.8 8.2 1311.1 8.2 -0.8 

67 163 96 163 25.54 5.46 1333.2 8.2 1330.7 8.2 -2.5 
68 166 98 166 26.41 5.50 1354.4 8.2 1352.6 8.1 -1.8 

69 167 98 167 26.88 5.51 1359.6 8.1 1357.4 8.1 -2.2 

70 170 100 170 27.77 5.54 1380.6 8.1 1379.1 8.1 -1.5 
71 173 102 173 28.67 5.57 1401.4 8.1 1398.3 8.1 -3.1 

72 176 104 176 29.59 5.60 1422.1 8.1 1419.6 8.1 -2.5 

73 179 106 179 30.53 5.64 1442.6 8.1 1438.5 8.0 -4.1 
74 182 108 182 31.48 5.67 1463.0 8.0 1459.5 8.0 -3.5 

75 185 110 185 32.45 5.70 1483.2 8.0 1478.1 8.0 -5.1 

76 188 112 188 33.43 5.73 1503.3 8.0 1498.8 8.0 -4.4 
77 191 114 191 34.43 5.76 1523.2 8.0 1517.1 7.9 -6.0 

78 194 116 194 35.45 5.79 1542.9 8.0 1537.5 7.9 -5.4 

79 197 118 197 36.48 5.82 1562.5 7.9 1555.6 7.9 -6.9 

80 200 120 200 37.53 5.85 1581.9 7.9 1575.7 7.9 -6.3 

81 203 122 203 38.59 5.88 1601.2 7.9 1593.4 7.8 -7.8 
82 206 124 206 39.66 5.91 1620.3 7.9 1613.2 7.8 -7.1 

83 209 126 209 40.76 5.93 1639.3 7.8 1630.7 7.8 -8.6 

84 212 128 212 41.87 5.96 1658.1 7.8 1650.3 7.8 -7.9 
85 215 130 215 42.99 5.99 1676.8 7.8 1667.5 7.8 -9.3 

86 218 132 218 44.13 6.02 1695.3 7.8 1686.7 7.7 -8.6 

87 219 132 219 44.71 6.03 1699.4 7.8 1691.0 7.7 -8.4 
88 222 134 222 45.87 6.06 1717.7 7.7 1710.1 7.7 -7.6 

89 225 136 225 47.05 6.08 1735.9 7.7 1726.9 7.7 -8.9 

90 228 138 228 48.24 6.11 1753.9 7.7 1745.7 7.7 -8.1 
91 231 140 231 49.45 6.14 1771.7 7.7 1762.3 7.6 -9.4 

92 234 142 234 50.67 6.16 1789.4 7.6 1780.9 7.6 -8.5 

93 237 144 237 51.91 6.19 1806.9 7.6 1797.2 7.6 -9.7 
94 240 146 240 53.17 6.21 1824.3 7.6 1815.4 7.6 -8.8 

95 243 148 243 54.44 6.24 1841.5 7.6 1831.5 7.5 -9.9 

96 246 150 246 55.72 6.27 1858.5 7.6 1849.5 7.5 -9.0 

97 249 152 249 57.02 6.29 1875.4 7.5 1865.4 7.5 -10.1 

98 252 154 252 58.34 6.32 1892.2 7.5 1883.1 7.5 -9.1 

99 255 156 255 59.67 6.34 1908.8 7.5 1898.7 7.4 -10.1 
100 258 158 258 61.02 6.37 1925.2 7.5 1916.2 7.4 -9.0 

101 261 160 261 62.39 6.39 1941.5 7.4 1931.6 7.4 -9.9 

102 264 162 264 63.76 6.42 1957.6 7.4 1948.8 7.4 -8.8 
103 269 166 269 65.88 6.46 1986.3 7.4 1975.3 7.3 -11.0 

104 272 168 272 67.30 6.48 2002.0 7.4 1992.2 7.3 -9.8 

105 275 170 275 68.74 6.50 2017.6 7.3 2007.0 7.3 -10.5 
106 278 172 278 70.19 6.53 2033.0 7.3 2023.7 7.3 -9.2 

107 281 174 281 71.66 6.55 2048.2 7.3 2038.3 7.3 -9.9 

108 284 176 284 73.14 6.57 2063.3 7.3 2054.8 7.2 -8.5 
109 287 178 287 74.63 6.60 2078.3 7.2 2069.2 7.2 -9.1 

110 290 180 290 76.15 6.62 2093.1 7.2 2085.4 7.2 -7.7 

111 293 182 293 77.67 6.64 2107.7 7.2 2099.6 7.2 -8.2 
112 296 184 296 79.22 6.66 2122.2 7.2 2115.6 7.1 -6.7 

113 299 186 299 80.78 6.69 2136.5 7.1 2129.5 7.1 -7.1 

114 302 188 302 82.35 6.71 2150.7 7.1 2145.3 7.1 -5.5 
115 305 190 305 83.94 6.73 2164.7 7.1 2159.0 7.1 -5.8 

116 308 192 308 85.54 6.75 2178.6 7.1 2174.5 7.1 -4.1 

117 311 194 311 87.17 6.78 2192.3 7.0 2188.0 7.0 -4.3 
118 314 196 314 88.80 6.80 2205.9 7.0 2203.3 7.0 -2.5 

12. Understanding the lifetime of neutron 

Ratio of neutron-proton mass difference to electron rest mass can be expressed as,  



10 International Journal of Advanced Astronomy 

 

( )

( )939.5654205 938.2

 

7208816  MeV

0.

2

51

 

09

d

9

l

8

5

9

0

5

8

 

n 4 2.531024247 an

1.293332

M

4 MeV
. 3 9 83

0
71

M

eV

.51099895 eV

n p

e

m m

m


− 
   

  
− 




  


                                                                                                                                           (31) 

 

Relation (31) can be understood with the following relation (32). It may be noted that, 
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Thus, it is possible to show that,  
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Now coming back to our nuclear stability and binding energy relations, we noticed that,  
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If one is willing to replace the factor 4 with 1 3.9464ne
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13. Understanding the root mean square radius of proton and nuclear charge radii 

Root mean square radius of proton [83], [84] can be understood with 
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For medium and heavy atomic nuclides, nuclear charge radii [85-93] can be expressed as, 
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This relation can be thoroughly investigated and modified for a better understanding and accuracy for the whole range of atomic nuclides. 

Its advanced fit can be expressed as,  
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Its reference relation [91] can be expressed as,  

 

( )

( ) ( )( )
1 3

,

0.0694 1 12.0825
1 0.1429 0.9562 fm

2

Z N

Z N

N Z
R A

A A A

 − + −−  
 − + +    

  

                                                                        (40C) 

 

See the following Fig. 1 for a graphical comparison. Root mean square deviation is around 0.0254 fm. Thus, by knowing the nuclear charge 

radii, nuclear gravitational constant [24-37] can be estimated as, 
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Estimated data can be compared with the data available at https://www-nds.iaea.org/radii/ and http://zgwlc.xml-jour-

nal.net/fileZGWLC//journal/article/file/6bed4d71-97cc-4f48-9f0f-20af839757da.txt. Estimated data has also been compared with the data 

presented in reference [88], https://www-nds.iaea.org/radii/.  

 

https://www-nds.iaea.org/radii/
http://zgwlc.xml-journal.net/fileZGWLC/journal/article/file/6bed4d71-97cc-4f48-9f0f-20af839757da.txt
http://zgwlc.xml-journal.net/fileZGWLC/journal/article/file/6bed4d71-97cc-4f48-9f0f-20af839757da.txt
https://www-nds.iaea.org/radii/
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Fig. 1: Fitted Nuclear RMS Charge Radii. 

14. Understanding various quantum constants 

Believing in these simple and workable relations, Planck’s constant and corresponding magnetic flux quantum [5], [52], [53] can be ex-

pressed as follows. 
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With reference to experimental magnetic flux quantum 
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Total magnetic flux generated for one electron can be,  
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For a simple two-pole system, quantum of magnetic flux per pole can be,  
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Following this logic, quantum of resistance can be expressed as,  
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We are working in this direction.  

15. Discussion on estimating the Newtonian gravitational constant, the proposed weak gravita-

tional constant and the charge ratio 

Considering our 4G model of final unification, we have noticed a great correlation between the Planck scale and the nuclear scale. If one 
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reference value for the past and future experimental values of NG . With further study- background physics can be understood, and accu-

racy can also be improved. In a unified approach, Newtonian gravitational constant can be estimated with many relations. Based on atomic 

interferometry, its experimental value seems to vary in a wide range of (6.672 to 6.693) x 10-11 cubic meters per kilogram second squared 

[94 - 96]. Based on gravitational coupling between resonating beams [97], [98], it is 6.68 x 10-11 cubic meters per kilogram second squared. 

Based on relation (21),  
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If the recommended value [52,53] of 62 31.435851032 10  J.m ,FG −   estimated value of 11 3 -1 -26.61938 10  m kg sec .NG −   Con-

sidering relation (20), obtained value of 62 31.440206 10  J.mFG −   and estimated value of 11 3 -1 -26.679794 10  m kg sec .NG −   

With reference to the recommended value [52,53] of 11 3 -1 -26.6743 10  m kg secNG −  and based on our proposed relations (20), (21) 

and (47), values of FG  and NG  are closely fitting with each other. This kind of approach can be recommended for further research. 

 

Here it may be noted that, based on the relations (8) and (11)  
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Thus, with reference to the known nuclear and atomic physical constants and their accuracy,  
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Interesting observation is that, in the above relation (49), 
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Based on relations (6), (10), (11), (20) and (21),  

 
1

3 2 15 3

2 5 12 4

w e n N

nn p n w e

G G G Gc e

eG m G G G

 
    

 

                                                                                                                                                          (52) 

 

Unification point of view, relations (21), (50), (51) and (52) need a thorough study.  

Based on relations (7), (20), (21), (42), (43), (48) and (51), quantitatively,  
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Proceeding further, Strong coupling constant can be expressed as,  
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See Table. 4 for understanding the sequence of formulae for estimating the physical constants. 

 

Table 4: Sequence of Formulae for Estimating the Physical Constants 

S. 
No 

By considering the experimental value of the nuclear charge ra-
dius [85-93] 

By considering the experimental value of the Strong coupling constant, 

(0.109 to 0.1206) 

See Table. 11 of Ref. [99] 
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Based on the assumed strong coupling constant having a value in the broad range of 0.1100 to 0.1200, one can estimate all other values. It 

may be noted that, in a verifiable approach, one can consider the fundamental ratio 2
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 as a cross-check value. An interesting point 

to be noted is that, when the obtained ratio h 
 
 

 is matching with 2 , in a verifiable approach, all estimated physical constants seem to be 

in harmony. Thus, in a unified data fitting approach, following our defined set of relations,  

1) Based on relation (48), 37 3 1 22.374335272 10  m .kg seceG − −   . 

2) Based on relation (43), 2.946358696ne

e
  and 0.11519371s   

3) Based on relation (6), 28 3 1 23.329560509 10  m .kg secnG − −    

4) Based on relation (53), 24 21.042367727 10  kg 584.7254121 GeV/wfM c−     

5) Based on relation (4), 22 3 1 22.909645136 10   m .kg secwG − −    

6) Based on relation (51), 11 3 1 26.679855344 10  m .kg secNG − − −  . This value is very close to the recent experimental result [98], 

[99], 11 3 1 26.6816 10  m .kg secNG − − −   

7) Based on relation (20), 62 31.440210121 10  J.mFG −    

With further study,  

1) All obtained values can be verified for their estimated accuracy with reference to relations like (8), (9), (10), (37 to 39) and (42 to 

51).  

2) A cyclic review on experimental values of various physical constants can be established. 

3) To standardize the obtained numerical values, eliminating unwanted relations, exploring new relations, developing a cohesive and 

workable physical model.  

16. Rest mass of neutrino or gravitino and its role in unification 

On eliminating or inferring the large numbers, we noticed that there exists a neutral massive elementary particle with mass 
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Considering Xm  as a representation of neutrino [7], [54], [55], beam method of neutron lifetime [100], [101] can be fitted with, 
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Using this relation, there is a scope for understanding the neutron lifetime difference of beam and bottle methods. During bottle method, if 

neutron volume suffers a slight reduction due to cold environment, one can expect a slight reduction in neutron lifetime. Relation (57) can 

be expressed as,  
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Thus, by considering the basic nuclear physical constants and neutron lifetime, Planck scale radius, hence both the Newtonian gravitational 

constant and the Planck’s constant can be estimated. It needs further study. 
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17. Tera electron volt photon radiation coming from galaxies 

In the near future, by increasing the operating capacity of particle accelerators it seems possible to confirm the existence of 585 GeV. It 

can be understood by observing Tera electron volt (TeV) photons coming by annihilation of 585 GeV weak fermions within the core of 

the particle accelerator or surroundings of astrophysical objects. At the vicinity of compact stars or exploding stars, TeV radiation can be 

understood with three theoretical methods [102-106]. As we are beginners of astrophysics domain, we appeal the science community to 

see the possibility of considering the proposed 585 GeV weak fermion with a charge of ( )e  in place of electron and proton. As it is assumed 

that 585 GeV weak fermion is the mother of all elementary particles, at very high energies, it can be assumed as relatively stable for the 

possible occurrence of the following accelerating mechanisms. 

 

Method. 1: Generation and annihilation of 585 GeV weak fermions 

 

a) 585 GeV fermions are generated by the decay of high energy elementary particles available within the core of the hot astrophysical 

objects.  

b) 585 GeV weak fermions emit high energy radiation via annihilation mechanism.  

 

Method. 2: Annihilation of accelerated 585 GeV weak fermions  

 

a) 585 GeV fermions are forced to accelerate by the surrounding shock waves. 

b) Accelerated 585 GeV weak fermions emit high energy photons via synchrotron mechanism or annihilation.  

 

Method. 3: Accelerated 585 GeV weak fermions sharing energy to low TeV photons 

 

a) 585 GeV fermions are forced to accelerate by the surrounding shock waves. 

b) By following Inverse Compton Effect (ICE), low TeV photons gain energy from high energy 585 GeV weak fermions resulting in 

much higher TeV photons. 



16 International Journal of Advanced Astronomy 

 

18. Conclusion 

Even though our approach is lagging in mathematical approach, and links are missing in developing a perfect model, compared to string 

theory, following our approach, there is a possibility of understanding and fitting the fundamental constants and there is a scope for devel-

oping unified physical concepts in a better way. In a microscopic approach, considering relations (1) to (60), it seems possible to understand 

and confirm the physical existence of the proposed 585 GeV weak fermion directly and indirectly. We would like to emphasize the point 

that the “ratio of mean mass of pions to the mean mass of weak bosons” is accurately matching with the “ratio of mass of proton to the 

proposed weak fermion”. It can be considered as a strong support and evidence for confirming the physical existence of the proposed weak 

fermion. In a macroscopic approach, by considering TeV photons coming from astrophysical objects, there is a scope and possibility for 

confirming the physical existence of 585 GeV weak fermion. It needs further study.  
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