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Abstract 
 

In this paper, the iterative method suggested by Daftardar and Jafari hereafter called Daftardar-Jafari method (DJM) is applied for study-

ing the deflection of light in General Relativity. For this purpose, a brief review of the nonlinear geodesic equations in the spherical 

symmetry spacetime and the main ideas of DJM are given. As an illustrative example, the simple case of the Schwarzschild metric is 

considered for which the approximate solution to the null-geodesic equation and the deflection angle of light are obtained. We also com-

pare the obtained result with some similar results presented earlier in the literature. 
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1. Introduction 

The well-known effect of the light deflection in the gravitational fields of compact objects is one of the first and key predictions of Gen-

eral Relativity (GR) [1], [2], [3]. Although the study of light deflection have historically been associated with the Solar System [4]-[7], in 

the recent decades, much more attention has been paid to the study of light deflection in the gravitational fields of various compact astro-

physical objects [8]. 

Basically, several approximate approaches are used to determine the deflection of light in the gravitational field of black holes. One of 

them is the standard parameterized post-Newtonian approach which applicable for b >> M, where b is the impact parameter of the unper-

turbed light ray and M is the mass of a black hole. Here and below, we use the units in which G = c = 1. As the next approach, one can 

note the standard weak-field approximate lens equation, which usually is called the classical lens equations [9]. However, these exact 

lens equations are also given in terms of elliptic integrals. Therefore, approximations of these exact solutions are also needed for a time-

efficient data reduction. Several proposals for generalized lens equations have then appeared in the literature. One decisive advantage of 

the classical lens equation is its validity for arbitrarily small values of the impact distance b. A lens equation which allows an arbitrary 

large values of the deflection angle and used the deflection angle expression for the Schwarzschild metric is obtained in [10], [11]. 

As is known, weak gravitational lensing makes it possible to find the mass of astronomical objects without requiring information about 

their composition or dynamic states. Therefore, in recent years, many authors have proposed studies of gravitational lensing by various 

astrophysical objects using various methods. Let us mention just a few of the latest articles on this topic. For example, the equations of 

motion of the massive and massless particles in the Schwarzschild geometry is studied by using the Laplace-Adomian Decomposition 

Method in [12], that shows the obvious success of this method in obtaining series solutions to a wide range of strongly nonlinear differ-

ential equations. 

A new method for calculating the angle of small deviation using the Gauss-Bonnet theorem was proposed by the authors of [13] and has 

found wide application in studies of this kind. This method was also applied to the study of light rays in a plasma medium in a static and 

spherically symmetric gravitational field and to the study of time-like geodesics followed for test massive particles in a spacetime with 

the same symmetries in Ref. [14]. The calculation of the bending angle using the trajectory equation based on geometric optics is also 

provided in [15], [16]. Because wormholes also cause gravitational lensing, this effect has been recently investigated in several papers 

(see, for example, [17], [18] and references therein). 

The author of this article has recently proposed to use two well - known methods, such as the homotopy perturbation method and the 

variational iteration method [19, 20], to study the deflection of light and the perihelion precession in GR [21]-[24]. Here we use another 

efficient iterative method for approximating null - geodesics and finding the deflection angle of light. This iterative method has been 

proposed by Daftardar-Gejji and Jafari [25], and proved the effectiveness for solving many of the linear and nonlinear ordinary differen-

tial equations, partial differential equations and integral equations [26], [27]. The proposed DJM is very effective and reliable, and the 

solution is obtained in the series form with easily computed components [28]. The main aim of this paper is to apply DJM in the 

Schwarzschild metric to solve the null-geodesic equation and to find the approximate value of the light deflection angle. In addition, we 

compare the obtained result with the results previously known from the literature. 

http://creativecommons.org/licenses/by/3.0/
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2. Null-geodesic equation in a spherically symmetric spacetime 

According to General Relativity [1, 8], the line element of general static spherically symmetric spacetime can be represented by  
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The trajectories of photon in GR are usually considered as the null geodesics in spacetime. Therefore, we have to study the geodesics in 

the spherically symmetric spacetime (1) in the spherical coordinates ),,,(  rtx =  as )(x , where   is some affine parameter, and 

satisfies the geodesic equation:  
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The geodesic trajectories can be obtained as the solutions of this equation. As is known, when deriving the geodesic equation, one can 

follow a simpler way if one takes into account the space-time symmetries of metric (1). 

First of all, we should note that one component of the geodesic line can always be chosen as 2/)(  =  , which means that we can 

always choose a geodesic lying in the equatorial plane of spherically symmetric space-time. Then, taking into account the null geodesics 

condition 0=ds  in (1), we can obtain the following equation  
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Since there are two conserved quantities along the geodesic in metric (1), the total energy ( ) dt
dE f r =  and the angular momentum per unit 

mass 




d
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rL 2=  , we can substitute these constants into equation (2) to obtain  
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This equation contains only one unknown function )(r  and can in principle be solved. However, the deflection of light are usually re-

lated to the geodesics orbits, i.e. )(r  . Therefore, with the help of 




d

d
rL 2=  , one can rewrite equation (3) as follows  
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As the coordinate ru /1  is more convenient than 
r

 in studying the geodesic equations in the spherically symmetric gravitational fields, 

equation (4) can be converting to the following one:  
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Finally, differentiating this equation with respect to   , we get the second-order geodesic equation in the following form:  
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Thereafter, we are going to apply DJM for studying the propagation of light in metric (1). But first, we need to recall the main idea of the 

DJM and its implementation in solving the second-order ordinary differential equations. 

3. Main ideas of DJM in brief 

In Ref. [25], the authors consider the general functional equation:  
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Where N a nonlinear operator from a Banach is space BB→  and f  is a known function. Suppose that the solution u  of Eq. (6) has the 

series form:  
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The nonlinear operator N  can be decomposed as  
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As it follows from (7) and (8), Eq. (6) is equivalent to  
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One can suppose the following recurrence relation:  
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Where ,...2,1=m  . Then  
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The m -term approximate solution of Eq. (7) is given by 
110 ... −+++= muuuu  . If N  is a contraction, then the series 1i i

u
=  in (12) 

absolutely and uniformly converges to a solution of Eq. (6), which is unique, in view of the Banach fixed point theorem [25]. For more 

details about the convergence of DJM, we refer the reader to Ref. [28]. 

4. Application of DJM to a second order differential equation 

Here our description mainly follows to Ref. [26]. Consider some non-linear ordinary differential equation of the second order,  
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Where a prime stands for the derivative with respect to   , 
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Equation (13) can be written in an operator form as:  
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Where we have used the Cauchy formula for repeated integration:  
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Then, applying the inverse operator L
1

 to both sides of the equation (15) and taking into account the initial condition (14), we have  
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Therefore, by using equations (16)-(20), we can represent equation (14) in the form of equation (1) by setting  
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By using expressions (21) and (22) in equation (6), we can follow the procedure (10) in order to obtain solution (12) of ODE (13), pro-

vided (14). Thereafter, we are going to apply DJM to the approximate solution of the null geodesic equation and finding the light deflec-

tion angle in Schwarzschild spacetime. 

5. Light Deflection in Schwarzschild spacetime via DJM 

The following example demonstrates the use of DJM for the analytical computation of the deflection angle of light in the simplest spher-

ically symmetric spacetimes (1). In the absence of mass ( 0=M ), the obvious analytic solution for (5) is a straight line expressed in polar 

coordinates as  

 

,
sin

)(..
b

u ls


 =                                                                                                                                                                                         (23) 

 

Where b  is a constant impact parameter. Obviously, the term 23 uM  comes from the correction by GR. Therefore, we can consider (23) 

to be the null approximation for (5). To solve the problem of finding the subsequent approximations to the solution of equation (5) by the 

iterative method, we have to follow the procedure of DJM for solving the second order nonlinear differential equations described in Sec-

tion 3. Let us consider the simplest case of metric (1), namely, the Schwarzschild spacetime describing the gravitational field of an un-

charged non-rotating star. For the Schwarzschild solution, we have 
r
Mrhrf 21)()( −==  , or  
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Where M  is the mass of a star. Therefore, equation (5) for the null geodesic can be written as  
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In the absence of mass ( 0=M  ), the obvious analytic solution for (25) is a straight line expressed in polar coordinates (23). Thus, the 

term 23 uM  comes from the correction of path by GR. Taking into account that a trajectory of light due to equation (25) is started as the 

straight line (23) at   , we have the following initial conditions for )(u  : 

 

.
1

)0(,0)0(
b

uu ==                                                                                                                                                                                 (26) 

 

We are going to solve the Cauchy problem (25), (26) for the nonlinear differential equation of the second order with a certain approxima-

tion using DJM. Therefore, comparing these equations with the corresponding equations (13), (14), we get the following equalities:  
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According to equations (21), (22) and (16), (17), we get  
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And, therefore, the functional equation (6) becomes as follows  
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So we can to use this equation to construct an approximate solution according to the procedure described by equation (10). The 0-term of 

the approximate solution (7), that is, the unperturbed motion, is described by bfu /)()(0  ==  , according to equations (10) and 

(29). 

It is easy to verify that )(u  , defined by equation (30), satisfies the initial conditions (26). Moreover, by differentiating this equation 

twice, we can verify that it is equivalent to the geodesic equation (25). Then, applying (10) to equation (30), one can obtain the following 

terms:  
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In the m  -term approximate solution (7) of the following form: )()( 1
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Using equations (31) and (32), we get )()()( 0102 uNuuNu −+=  , that is 
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As a result of calculating the integral in equation (33), the approximate solution 
210 uuuu ++=  can be obtained in the following form:  
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Note that this expansion is quite different from the one given in [Shchigolev4] and does not seem very useful, since the coefficients are 

expressed as power polynomials in   , although they usually contain trigonometric functions. However, some functions can be restored 

if we have enough terms in the expansion (12). Indeed, applying the power series of trigonometric functions,  
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To the first and second terms of equation (34), we can represent the approximate solution in the following form:  
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Obviously, solution (35) satisfies the initial condition 0)0( =u  . Therefore, the deflection angle of light   can be obtained from the 

equation 0)( =+u  , using the small angle approximation  
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and (37) to the null trajectory (35) results in the following small deflection angle in DJM approximation (up to the second order):  
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Note that the angle of light deflection in the Schwarzschild metric obtained earlier (see, for example, [Virbhadra1]) and also derived 

using the homotopy perturbation method in [Shchigolev4] with the same accuracy is as follows  
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Graphs of deflection angles )(xDJM  and )(xHPM  , where Mbx /=  is a dimensionless impact parameter, are shown in Figure 1. It is 

known that a photon with an impact parameter of 2/33Scr rbb =  , where MrS 2=  is the Schwarzschild radius, may be captured 

by the central object of mass M [2]. Thus, we have to consider 33x  . 

 

 
Fig. 1: Shows The Graphs of Deflection Angles ( )

DJM
x  (Continuous Line) and ( )

HPM
x  (Dashed Line) Versus the Dimensionless Impact Parameter 

Mbx /= . 

6. Conclusion 

Thus, we have applied the iterative method called Daftardar-Jafari method for studying the deflection of light in General Relativity. First 

of all, we have represented a brief review of the nonlinear geodesic equations in the spherical symmetry spacetime and the main ideas of 

DJM. In order to approbate DJM in the problem of deflection of light and present the main steps in solving by this method, we have illus-

trated how DJM can be employed to obtain the approximate analytical solution of the null geodesic equation in the simple case of the 

Schwarzschild metric. For this metric, the approximate solutions to the null-geodesic equation and the deflection angle of light have been 

obtained. We also compared the obtained result with the similar result presented earlier in the literature. 

An important advantage of DJM is the simplicity of obtaining approximate solutions by repeated applications of the iterative equations. 

The analytic and approximate solutions are obtained without any restrictive assumptions for nonlinear terms as required by some existing 

techniques. Moreover, by solving some examples, it is seems that the DJM appears to be very accurate to employ with reliable results. 

We used the Maple software for the calculations in this study. 
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