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Abstract 
 

The triangular Lagrangian points of the elliptic restricted three-body problem (ERTBP) with oblate and radiating more massive primary 

are studied. The mean motion equation used here is different from the ones employed in many studies on the perturbed ERTBP. The effect 

of oblateness on the mean motion equation varies. This change influences the location and stability of the triangular Lagrangian points. 

The points tend to shift in the y-direction. The influence of the oblateness on the critical mass ratio is also altered. But the eccentricity limit  

for stability remains the same. 
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1. Introduction 

Because of their stable location (due to nullified centrifugal and gravitational forces [1]) and many other advantages particular to the chosen 

system and the positions, the Lagrangian points are of practical interests from the late 20th century [2]. They serve to be the address for 

many natural (Trojan asteroids) and artificial satellites. Space agencies across the world try to utilize these points to the fullest. Moreover, 

the triangular Lagrangian points get added attention as they tend to be more stable. The OSIRIS-REX mission of NASA and Hayabusa2 

of the Japanese Space Agency manifest the interest for triangular Lagrangian points. 

The history of Lagrangian points dates back to the 18th century when Euler and Lagrange discovered the five Lagrangian points. In the 

early studies, the theory considered the orbit of the primaries circular [3, 4]. Later investigations included the eccentricity effects on the 

Lagrangian points [5], [6]. The research was still very general that any two systems with the same eccentricity led to the same Lagrangian 

points. Then, the points became system-specific with the inclusion of perturbations [7 - 10]. These perturbations directly affected the 

equations of motion and the mean motion equation, which in turn influenced the properties of the Lagrangian points. 

A recent study [11] recognised and rectified the defects of the mean motion equation used in earlier investigations. This paper intends to 

employ the newly formulated mean motion equation [11] to the elliptic restricted three-body problem (ERTBP) considering the more 

massive primary as an oblate and radiating spheroid and the other primary as a point mass. The changes imposed on the location and 

stability of the triangular Lagrangian points are studied. 

Firstly, the equations of motion and the mean motion equation for the particular case are formulated. The triangular Lagrangian points are 

located. The critical mass ratio and the limiting eccentricity for the system to be stable are determined. Finally, the transition curves are 

generated to collectively show the region of stability in the eccentricity – mass ratio plane. 

2. Equations of motion 

Consider an object with a negligible mass in the plane of two other bodies called the primaries (masses μ and 1 − μ). The gravitational 

forces of the primaries affect the motion of the third body (with negligible mass) but, the third body does not affect the primaries. The 

origin of this system is at the barycentre. The x-axis joins the primaries. The line running perpendicular to it forms the y-axis. Let the more 

massive primary be an oblate (oblateness coefficient A1) radiating (radiation pressure q) spheroid and the other one a point mass. The 

primaries revolve around their barycentre in an elliptic orbit (eccentricity e and true anomaly θ). Let the third body be at distances r1 and 

r2 from the primaries which are given by 

 

 r1
2 = (x − μ)2 + y2,                                                                                                                                                                                    (1) 

 

 r2
2 = (x + 1 − μ)2 + y2.                                                                                                                                                                             (2) 
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The equation of the third body can be represented in the pulsating dimensionless coordinate system [3] as 

 

x′′ − 2y′ =
1

(1+ecosθ)
Ωx,  

 

y′′ + 2x′ =
1

(1+ecosθ)
Ωy.                                                                                                                                                                               (3) 

 

where Ω is the force function given by 

 

 Ω =
1

2
(x2 + y2) +

1

n2
(

(1−μ)q

r1
+

μ

r2
+

(1−μ)qA1

2r1
3

).                                                                                                                                            (4) 

3. Mean motion 

The mean motion equations used in the perturbed ERTBP face numerous defects [11]. The rectified mean motion equation is used here. 

This mean motion equation is obtained from the secular perturbation effects of oblateness [12]. 

 

 n2 = 1 + 2K1A1 (1 +
7

4
e2),                                                                                                                                                                         (5) 

 

where K1 is a combination of the equatorial radius of the more massive primary (Re), the distance between the primaries (R) and the semi-

major axis (a). 

 

K1 =
3R2

a2Re
2.  

4. Location of triangular points 

The Lagrangian points are the singularity points where the derivatives of the force function become zero. 

 

Ωx = 0,  
 

x −
1

n2
[

(1−μ)q(x−μ)

r1
3

+
μ(x+1−μ)

r2
3

+
3A1

2

(1−μ)q(x−μ)

r1
5

] = 0.   

 

And 

 

Ωy = 0,  

 

y [1 −
1

n2
(

(1−μ)q

r1
3

+
μ

r2
3

+
3

2
A1

(1−μ)q

r1
5

)] = 0.   

 

For the triangular Lagrangian points y ≠ 0 because, they do not lie on the x-axis. Instead, they form nearly equilateral triangles [7] with 

the primaries. Therefore, the above equations take the form 

 

x −
1

n2 [
(1−μ)q(x−μ)

r1
3 +

μ(x+1−μ)

r2
3 +

3A1

2

(1−μ)q(x−μ)

r1
5 ] = 0,   

 

[1 −
1

n2
(

(1−μ)q

r1
3 +

μ

r2
3 +

3

2
A1

(1−μ)q

r1
5

)] = 0.                                                                                                                                                     (6) 

 

Eqs. (6) should be solved to get the location of the triangular Lagrangian points. The value of radiation pressure q is nearly 1. So, in further 

calculations, to ease the derivation, let us replace it with the term (1 − ϵ). Therefore, q = 1 − ϵ. Substituting in the above equations 

 

x −
1

n2 [
(1−μ)(1−ϵ)(x−μ)

r1
3 +

μ(x+1−μ)

r2
3 +

3A1

2

(1−μ)(1−ϵ)(x−μ)

r1
5 ] = 0,  

 

[1 −
1

n2
(

(1−μ)(1−ϵ)

r1
3 +

μ

r2
3 +

3

2
A1

(1−μ)(1−ϵ)

r1
5

)] = 0.                                                                                                                                         (7) 

 

Solving Eqs. (7), 

 

 2n2r1
5 − 2r1

2(1 − ϵ) − 3A1(1 − ϵ) = 0,                                                                                                                                                   (8) 

 

n2r2
3 − 1 = 0.                                                                                                                                                                                               (9) 

 

Let r1 = 1 + δ1 as it is slightly more than the value 1. Solving Eq. (8), we get 

 

δ1 =
2−2ϵ+3A1−3A1ϵ−2n2

5n2−2+2ϵ
,  

 

δ1 = A1 −
4

3
K1A1 (1 +

7

4
e2) −

2

3
ϵ −

5

3
A1ϵ +

28

9
K1A1ϵ (1 +

7

4
e2) +

4

9
ϵ2,  
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r1
2 = 1 + A1 −

4

3
K1A1 (1 +

7

4
e2) −

2

3
ϵ −

5

3
A1ϵ +

28

9
K1A1ϵ (1 +

7

4
e2) +

4

9
ϵ2.                                                                                       (10) 

 

Similarly, let r2 = 1 − δ2 because this will be slightly less than 1. Solving Eq. (9), we get 

 

δ2 =
4

3
K1A1 (1 +

7

4
e2),  

 

 r2
2 = 1 −

4

3
K1A1 (1 +

7

4
e2).                                                                                                                                                                     (11) 

 

Comparing Eqs. (10) and (11) with Eqs. (1) and (2) and solving for x and y, we get the location of the triangular Lagrangian points. 

 

x = μ −
1

2
−

A1

2
+

1

3
ϵ,                                                                                                                                                                                    (12) 

 

y = ±
√3

2
[1 +

A1

3
−

8

9
K1A1 (1 +

7

4
e2)] −

2

9
ϵ.                                                                                                                                              (13) 

 

There is a shift observed in the y-coordinates of the points when compared to the earlier studies [8], [9]. When these perturbations are 

removed, the locations match with the classical ERTBP results [3], [4]. 

5. Stability of triangular points 

An object is said to be in equilibrium if it stays in the same position for infinite time. As this is not practically possible, it is good if at least 

these points are stable. To investigate the stability of the points, we analyse the motion of the third body in a place very close (with a very 

small displacement(ξ, η)) to the location of the triangular Lagrangian points (a, b). The motion of the third body in the vicinity of the 

Lagrangian points is defined by the variational differential equations 

 

ξ′′ − 2η′ =
1

1+ecosθ
[ξΩxx + ηΩxy],  

 

η′′ + 2ξ′ =
1

1+ecosθ
[ξΩxy + ηΩyy].  

 

Substituting the general solutions of these equations, we can get the characteristic equation representing the motion. 

 

 λ4 + (4 −
Ωxx

√1−e2
−

Ωyy

√1−e2
) λ2 + (

ΩxxΩyy−Ωxy
2

(1−e2)
) = 0.                                                                                                                                   (14) 

 

This equation is of the form 

 

aλ4 + bλ2 + c = 0.  
 

And its solution 

 

λ = ±√−b±√b2−4ac

2a
 ,  

 

where 

 

a = 1,  

b = 4 −
Ωxx

√1−e2
−

Ωyy

√1−e2
,  

 

c =
ΩxxΩyy−Ωxy

2

(1−e2)
 ,  

 

and 

 

Ωxx =
3

4
+ A1 [ 

3

2
− 3μ + K1 (1 +

7

4
e2)] + ϵ [−

1

2
+

3

2
μ],                                                                                                                            (15) 

 

Ωyy =
9

4
+ A1 [

3

2
− K1 (1 +

7

4
e2)] + ϵ [

1

2
−

3

2
μ],                                                                                                                                         (16) 

 

Ωxy = ±
√3

2
[3μ −

3

2
+ A1 [μ − 2 −

2

3
K1 (1 +

7

4
e2) +

4

3
μK1 (1 +

7

4
e2)] + ϵ [

1

4
+

μ

4
]].                                                                               (17) 

 

The roots of the characteristic equation are given by 

 

λ = ±√−𝑏±√𝑏2−4𝑎𝑐

2𝑎
.  
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It is not possible for this system to be asymptotically stable. To attain marginal stability, all the roots should be imaginary. There are two 

conditions to be satisfied for the roots to be imaginary. 

The first condition is that 𝑏 > 0. Considering this, the limiting eccentricity 𝑒0 can be found. If the eccentricity of the orbit of the primaries 

lie in the range 0 ≤ 𝑒 ≤ 𝑒0, then the system will be stable. 

 

𝑒2 < 1 −
9

16
[1 + 𝐴1 − 𝜇𝐴1]2,  

 

𝑒0 = √1 −
9

16
[1 + 𝐴1 − 𝜇𝐴1]2.                                                                                                                                                                  (18) 

 

This is the same equation obtained in [9]. This means that neither the radiation pressure nor the change in the mean motion equation impacts 

the limiting eccentricity. When the oblateness is zero, the limiting eccentricity gets the value √7/4 (same as [6]). The value decreases with 

increasing oblateness. But this limiting eccentricity is unaltered by the radiation pressure of the more massive primary. 

The second condition needs the discriminant of the system to be greater than zero (𝑏2 − 4𝑎𝑐 ≥ 0). With this condition, the critical mass 

ratio obtained here is 

 

 𝜇𝑐 = 𝜇𝑒 + 𝐴1 (−
1

9
−

11

9√69
−

8

27√69
𝐾1) −

2

27√69
𝜖.                                                                                                                                      (19) 

 

Where, 𝜇𝑒 is the result of unperturbed ERTBP (from [6]) 

 

 𝜇𝑒 =
1

54
(27 − 3√3√−73 + 64𝑒2 + 96√1 − 𝑒2).                                                                                                                                    (20) 

 

This critical mass ratio varies slightly from that obtained in previous studies [9], [10]. This variation is due to the change in the mean 

motion. 

Fig.1 shows the variation of 𝜇𝑐 with eccentricity for different values of 𝜖 and 𝐴1. The critical mass ratio decreases with eccentricity, ob-

lateness and also the radiation pressure. 

 

 
Fig. 1: Variation of Critical Mass Ratio (𝜇𝑐) with Eccentricity (E) for Different 𝐴1 and 𝜖. 

6. Transition curves 

Transition curves show the region within which the triangular Lagrangian points remain stable in the 𝜇 − 𝑒 plane. The method suggested 

in [13] is used to get the transition curves. The variational equations of motion are written in the form of a matrix. Its characteristic 

exponents can be expanded as 

 

 𝜆 = 𝜆0 + 𝜆1𝑒 + 𝜆2𝑒2 + ⋯                                                                                                                                                                          (21) 

 

Here, the higher order terms are truncated and the solutions for 𝜆0, 𝜆1and 𝜆2 are obtained by equating the coefficients of e terms in the 

general solution of variational equations of motion. 

𝜆0 is the solution of the equation 

 

𝜆0
4 + (4 − 𝛺𝑥𝑥 − 𝛺𝑦𝑦)𝜆0

2 + (𝛺𝑥𝑥𝛺𝑦𝑦 − 𝛺𝑥𝑦
2) = 0,   

 

 𝜆1 = 0,  
 

𝜆2 = − [
(𝑄2−4𝑅−16)𝜆0

2+𝐴0𝐹0+𝐴1𝐹1+𝐴2𝐹2

4(𝑄2−4𝑄−4𝑅)𝜆0
2+32𝑅

] 𝜆0 ,  

 

where, 

𝑄 = −(4 − 𝛺𝑥𝑥 − 𝛺𝑦𝑦),  

 

𝑅 = 𝛺𝑥𝑥𝛺𝑦𝑦 − 𝛺𝑥𝑦
2,  
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𝐴0 = [(𝑄 + 4)2(𝑄 − 4) − 4𝑄𝑅]𝜆0
2 − 𝑅(𝑄 + 4) − 4𝑅2,  

 

𝐴1 = −8𝜆0𝑅[2𝜆0
2 − (𝑄 + 4)],  

 

𝐴2 = −𝜆0
2𝑅[𝑄2 − 4𝑅 − 16],  

 

𝑁 = [4𝑄2 + 8𝑄 + 4 − 16𝑅]𝜆0
2 − 4𝑅 + (𝑄 + 1)2,  

 

𝐹0 =
1

𝑁
[𝜆0

2(𝑄 + 1) + (𝑄 + 1) + 2𝑅],  

 

𝐹1 =
−𝜆0

𝑁
[2𝜆0

2 + (𝑄 + 3)],  

 

𝐹2 =
−1

𝑁
[6𝜆0

2 − (𝑄 + 1)].  

 

For transition curves of periodic solutions, the exponent will be 

 

 𝜆 = 𝑖 (𝑛 ±
𝑖

2
) , 𝑛 = 0, ±1, ±2 .  

 

To get the curve in the range 0 ≤ 𝜇 ≤ 1/2, 𝑛 must be equal to 0. Thus, the exponent should be  

 

 𝜆 = ±
𝑖

2
,                                                                                                                                                                                                       (22) 

 

Equating Eq. (21) and Eq. (22), 

 

 (𝜆0 + 𝜆2𝑒2)2 = −
1

4
 .                                                                                                                                                                                   (23) 

 

Substituting 𝜆0 and 𝜆2 of this particular problem in Eq. (23) the transition curves (Fig 2) can be obtained. The region inside these curves 

represent the stable region in the plane. The transition curves shrink a little (minute variation) because of the perturbations. 

i) 𝐴1 = 0, 𝜖 = 0 

 

 
 

ii) 𝐴1 = 0.0006, 𝜖 = 0 
 

 
 

 

iii) 𝐴1 = 0, 𝜖 = 0.0001 
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iv) 𝐴1 = 0.0006, 𝜖 = 0.0001 
 

 
Fig. 2: Transition Curves. 

7. Conclusion 

The elliptic restricted three-body problem is studied for the case where the more massive primary is an oblate radiating spheroid. The 

equations of motion are formulated. The mean motion equation is obtained by analytical integration from the secular perturbation terms 

due to oblateness. The triangular Lagrangian points are located and their stability is analysed. The points move towards the primaries in 

the 𝒚-direction. The limiting eccentricity for the stable system does not vary. The critical mass ratio reduces when compared to the earlier 

studies for the same case. Thus, the effect of the modified mean motion is felt only in the location and the critical mass ratio and not in the 

limiting eccentricity. 
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