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Abstract 
 

Satellite moving under the gravitational field of Earth deviates from its two-body elliptic orbit, due to the combined effects of the gravita-

tional field of Earth, atmospheric drag, solar radiation pressure, third-body gravitational effects, etc. This paper utilizes the KS regular 

element equations to solve Newtonian equations of motion to obtain numerical solution with respect to perturbing forces, like, Earth's 

gravity (includes zonal, sectorial and tesseral harmonics terms), atmospheric drag and solar radiation pressure. Effectiveness of the theo-

ry is illustrated by comparing the results with some of the existing theories in literature. 
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1. Introduction 

The effect of various perturbing forces like the shape of the Earth, atmospheric drag, the Sun's radiation, attraction due to Sun and Moon, 

the Earth's magnetic field, etc. causes the geocentric space object to deviate from its two-body elliptic orbit. For near Earth’s satellite 

orbit, the perturbations due to asphericity of the Earth and atmospheric drag plays a major role, but for high altitude orbits, solar radiation 

pressure is more important than atmospheric drag. Hence to predict the motion of the satellite precisely, a mathematical model for these 

forces must be selected properly for integrating the resulting differential equations of motion. The classical Newtonian equations of mo-

tion, which are nonlinear, are not suitable for long-term integration for computing accurate orbit.  

 

The KS transformation by Kustaanheimo and Stiefel [1] is used to regularize the nonlinear Kepler equation of motion and reduced it into 

linear differential equations of a harmonic oscillator of constant frequency. The method of KS elements [2] has been found to be a very 

powerful method for obtaining numerical solution with respect to any type of perturbing forces, as the equations are less sensitive to 

round off and truncation errors [3]. The equations are everywhere regular comparing to the classical Newtonian equations, which are 

singular at the collision of two bodies.  

 

In this paper a detailed study is carried out for orbit prediction using KS differential equations by including the non-spherical gravitation-

al potential (zonal, sectorial and tesseral harmonic terms) of the Earth, atmospheric drag and solar radiation pressure as perturbing forces. 

Higher order Earth’s gravity (zonal, sectorial and tesseral) terms are included by utilizing the recurrence relations of associated Legendre 

polynomial and its derivatives. To know the effectiveness of the theory, the results are compared with some of the existing theories in 

literature.  

2. Equations of motion 

The Newtonian equations of motion are given by, 

 

x⃗ ̈ +
K2

r3 x⃗  =  P⃗⃗ −
∂V

∂x
 ,  K2 = k2(M + m),                                                                                                                                                       (1) 

 

where x⃗  denotes the position vector of the particle with respect to a coordinate system centred at the mass M and perturbed by a perturbed 

force P⃗⃗  and a perturbing potential V, dot represent differentiation with respect to the time t, r is the distance between the masses, k2 is the 

universal gravitational constant, and  
∂V

∂x⃗ 
  is the gradient of the scalar function V(x⃗ , t).  

 

KS element equations of motion [2], [4] are given by, 
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where E, ω , t are, respectively, generalized eccentric anomaly, angular frequency and physical time. 

 

The components of the position vector x⃗  of the particle are computed as,  x⃗ = L(u⃗ )u⃗  , 
 

where, 
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The radial distance of the particle is computed as, r = u1
2 + u2

2 + u3
2 + u4

2 = √x1
2 + x2

2 + x3
2  

 

Velocity vector of the particle are as follows: 

 

ẋ1 =
4ω

r
(u1u1

∗ − u2u2
∗ − u3u3

∗ + u4u4
∗)  

 

ẋ2 =
4ω

r
(u2u1

∗ + u1u2
∗ − u4u3

∗ + u3u4
∗)  

 

ẋ3 =
4ω

r
(u3u1

∗ + u4u2
∗ + u1u3

∗ + u2u4
∗).  

3. Geo-potential 

To model for the acceleration caused by the Earth’s coefficients are taken from WGS84_EGM96 [5]. The forces acting on an artificial 

satellite due to the Earth’s gravity harmonics (zonal, sectorial and tesseral) is modeled using [6], [7] as below, 

 

V =
K2

r
∑ (

R

r
)
n

∞
n=2 ∑ (Cnm cos(m ) +  Snm sin(m )) Pnmsin(ф)n

m=0 ,  

 

where R is mean equatorial radius of Earth, ф is the geocentric latitude, λ is the longitude, Cnm and Snm are dimensionless constants 

known as gravity coefficients for zonal, sectorial and tesseral harmonics and Pnm represent the set of associated Legendre polynomials 

[7].  

4. Atmospheric drag 

The acceleration vector on a space object due to atmospheric drag a⃗ aero is calculated from [7], [8]  

 

a⃗ aero = −
1

2
ρvrel

2BC
v⃗⃗ rel

|v⃗⃗ rel|
 ,                                                                                                                                                                           (2) 

 

where 𝜌 is the local atmospheric density, v⃗ rel is the space objects velocity vector relative to the atmosphere, vrel is the space object's 

scalar velocity and BC is the ballistic coefficient. The NRLMSISE00 [9] atmospheric model was used to compute atmospheric densities.  
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The velocity vector relative to the rotating atmosphere is given by 

 

v⃗ rel  =  [
dx

dt
+ ω⊕y 

dy

dt
− ω⊕x 

dz

dt
]
T

,  

 

where ω⊕ = 7.29211x 10−5 rad/sec is the rotational rate of Earth.  

 

Usually, C =
cDA

M
 , where M is the mass of the object, cD is the drag coefficient and 𝐴 is the projected cross-sectional area of the space 

object perpendicular to the velocity vector.  

5. Solar radiation pressure (SRP) 

The acceleration vector on a space object due to solar radiation pressure a⃗ srp is calculated from [10], 

 

a⃗ srp = cr
A

m
kφ

r⃗ sat−r⃗ sun

r⃗ sun
 ,                                                                                                                                                                                (3) 

 

where, cr is the constant of reflectivity of the satellite, A is the area of the transverse section of the satellite perpendicular to the disturb-

ing force, m is the satellite mass, k is the ratio of the solar constant and the speed of the light, φ is the shadow function, which has value 

'1', if the satellite is fully illuminated and '0', if it is in the Earth's shadow, r sat is the geocentric vector of the satellite and r sun is the the 

geocentric vector of the Sun. 

 

SIGHT algorithm [7] available in Vallado is used to determine, if the satellite has a direct line of sight with the Sun, and hence whether it 

is in Earth’s shadow. SIGHT algorithm assumes the light from the Sun acts as a point source [7]. Let r1⃗⃗  ⃗ be the geocentric position vector 

of the satellite and r2⃗⃗  ⃗ be the geocentric position vector of the Sun. The value of τmin, which minimizes the distance to the central body is 

given by, 

 

τmin =
|r1⃗⃗⃗⃗ |

2−r1⃗⃗⃗⃗ .r2⃗⃗⃗⃗ 

|r1⃗⃗⃗⃗ |
2+|r2⃗⃗⃗⃗ |

2−2r1⃗⃗⃗⃗  .r2⃗⃗⃗⃗ 
  

 

A parametric representation of a line between the two position vectors, r1⃗⃗  ⃗ and r2⃗⃗  ⃗ , is given by 

 

|𝑐 (𝜏𝑚𝑖𝑛)|2 = (1 − 𝜏𝑚𝑖𝑛)|𝑟1⃗⃗⃗  |
2 + (𝑟1⃗⃗⃗  . 𝑟2⃗⃗  ⃗)𝜏𝑚𝑖𝑛  

 

If 𝜏𝑚𝑖𝑛 < 0.0 or 𝜏𝑚𝑖𝑛 > 1.0 , then the satellite is illuminated. ie. if, |𝑐 (𝜏𝑚𝑖𝑛)|2 ≥ 1.0 , then the satellite is illuminated. else, the satellite 

is not illuminated 

If the satellite is illuminated, the perturbation due to solar radiation pressure is computed using Equation (03). If the satellite is not illu-

minated, the perturbation due to solar radiation pressure is set to zero. 

6. Results and conclusion 

The numerical integration of the above differential equations of motion are carried out with Earth’s gravity harmonics, air drag and solar 

radiation pressure as perturbing forces. The numerical integration of the KS differential equations of motion has been carried out using a 

fixed step size of fourth order Runge-Kutta method with respect to the initial conditions. The constants used for Earth's equatorial radius 

(R), and Earth's Gravitational constant (𝒌𝟐) are 6378.145 km, and 398600.4418 km3/s2, respectively. In our analysis we assumed, CD = 

2.2 and CR = 1.5.  

 

As a first step, the artificial satellite Explorer-19, which is at 750 Km height is chosen for the analysis. The initial position and velocity 

components of satellite are provided in Table 1 [10]. In this study perturbations due to the gravity harmonics terms up to J4, air drag and 

solar radiation pressure are considered. 

 
Table 1: Initial Condition 

 

x1 (km)                                                                                                                              3538.646 

x2 (km)                                                                                                                            -2902.799 

x3 (km) -5483.478 

 �̇�1 (km/sec) 5.842408 

�̇�2 (km/sec) -1.772259 

�̇�3 (km/sec) 4.707377 

 

Orbital epoch is 14 Feb 1976 00:00:00 UTC, with area to mass ratio as 13.04 x 10-07 km2/kg. The accuracy check in the solution at any 

fictitious time is obtained using the bilinear relation, 

 

𝐵𝐼 = 𝑢4𝑢1
′ − 𝑢3𝑢2

′ + 𝑢2𝑢3
′ − 𝑢1𝑢4

′  

 

If this BI is equal to zero, implies the stupendous accuracy in the solution. 

 

The above initial values are used to compute the position and velocity components with respect to various perturbing forces and the accu-

racy of the solution is determined by computing the bilinear relation.  
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Table 2 provides the bilinear relation under the perturbing forces at any time (days). In this Table 2, column 1 contains the time in days, 

column, 2 contains the approach used for orbit prediction, The 3rd column gives the results generated with gravity alone, 4th column is the 

results with gravity and drag and without SRP and 5th column includes all the perturbations. The results obtained using the present KS 

theory is compared with Hany's results ([10]). Comparison shows that the KS results are more accurate than that of Hany's results. 

 
Table 2: Comparison of the Values of Bilinear Relation Corresponding to Their Perturbations Forces 

 

Time (Days) 

                                              The value of bilinear relation (BI) 

Approach Only gravity 
With pert. and 
without SRP 

With pert. and 
with SRP 

0.768722 
Hany -2.1191E-10 -2.4374E-10 -2.0372E-10 

KS 1.3195E-10 1.6456E-10 1.7277E-10 

1.537444 
Hany -4.1473E-10 -4.1745E-10 -4.1109E-10 
KS 2.9755E-10 3.5485E-10 3.2546E-10 

2.306164 
Hany -6.0754E-10 -6.5119E-10 -6.1845E-10 

KS 4.3987E-10 5.0647E-10 4.7337E-10 

3.843645 
Hany -9.8134E-10 -1.1559E-10 -1.0486E-10 

KS 7.6846E-10 8.3704E-10 7.8162E-10 

4.612355 
Hany -1.1905E-09 -1.2632E-10 -1.2187E-10 
KS 9.3108E-10 9.9336E-10 9.4341E-10 

5.381111 
Hany -1.3960E-09 -1.4697E-09 -1.4297E-09 

KS 1.0723E-09 1.1715E-09 1.1095E-09 

6.14981 
Hany -1.6516E-09 -1.7016E-09 -1.9654E-09 

KS 1.2550E-09 1.3583E-09 1.2766E-09 

6.918555 
Hany -1.8762E-09 -1.9726E-09 -1.9654E-09 

KS 1.4257E-09 1.5355E-09 1.4610E-09 

7.687293 
Hany -2.0972E-09 -2.1937E-09 -2.1836E-09 
KS 1.6060E-09 1.7365E-09 1.6374E-09 

69.108767 
Hany -1.3006E-08 -1.2827E-08 -1.2816E-08 

KS 1.0113E-08 1.0696E-08 1.0453E-08 

69.877513 
Hany -1.2918E-08 -1.2700E-08 -1.2776E-08 

KS 1.0077E-08 1.0612E-08 1.0370E-08 

70.646255 
Hany -1.2781E-08 -1.2550E-08 -1.2756E-08 
KS 1.0005E-08 1.0553E-08 1.0318E-08 

 

As a second step, four test cases have been chosen for detailed numerical study with varying eccentricity, whose initial conditions (oscu-

lating orbital elements) are given in Table-3.  

 
Table 3: Initial Conditions for Different Test Cases 

 

Variables Case A Case B Case C Case D 

Semi major Axis (a) (km) 46478.6 46478.6 46478.6 46478.6 

Eccentricity (e) 0.001 0.5 0.6 0.7 
Inclination (i) (deg) 51.6 51.6 51.6 51.6 

RAAN (Ω) (deg) 349.213 349.213 349.213 349.213 

Arg. of Perigee (𝝎) (deg) 25.24 25.24 25.24 25.24 

True Anomaly (f) (deg) 311.234 311.234 311.234 311.234 

Mean Anomaly (deg) 311.32 344.703 349.282 353.178 
Apogee (km) 40146.942 63339.76 67987.62 72635.48 

Perigee (km) 40053.984 16861.16 12213.3 7565.443 

 

The Earth's gravity harmonics terms up to J6,6, air drag and solar radiation pressure are included as the perturbing forces in the equations 

of motion. Orbital epoch considered is 02 June 2015 00:00:00 UTC, with area to mass ratio as 10.454 x 10-03 km2/kg.  

 

The initial conditions provided in Table 3 are used for orbit propagation. Osculating orbital elements obtained for 30 days duration with a 

step size of 1degree using the present KS theory is compared with High Precision Orbit propagator (HPOP). High Precision Orbit propa-

gator uses numerical integration of the differential equations of motion to generate ephemeris. HPOP, available in STK 9.2 is used for 

comparing the results with the present KS theory.  

 

Table 4 to 7 gives the comparison between KS and HPOP values of orbital elements (osculating elements) for 30 days. In these tables, 

column 1 contains the time in days, column 2 contains the approach used for orbit prediction, columns 3 to 9 contain the information 

regarding osculating orbital elements semi-major axis (a), eccentricity (e), orbital inclination (i), right ascension of ascending node (Ω), 

argument of perigee (ω) plus mean anomaly (M), apogee altitude (Ha) and perigee altitude (Hp). From these tables, it is clear that the 

results obtained from the present KS regular equations match very well with HPOP results. 

 
Table 4: Comparison Between KS and HPOP Values of Orbital Elements (Case A) 
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Table 5: Comparison Between KS and HPOP Values of Orbital Elements (Case B) 
 

 
 

Table 6: Comparison Between KS and HPOP Values of Orbital elements (Case C) 
 

 
 

Table 7: Comparison Between KS and HPOP Values of Orbital Elements (Case D) 
 

 
 

The following figures 1 to 12, shows the differences between the KS and HPOP values of the important orbital parameters semi-major 

axis, eccentricity and inclination, which define size, shape and orientation of the orbit for Cases A, B, C and D. 

 

CASE A 

 

 
Fig. 1: Difference Between KS and HPOP in Semi-Major Axis. 
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Fig. 2: Difference Between KS and HPOP in Eccentricity. 

 

 
Fig. 3: Difference Between KS and HPOP in Inclination. 

 

CASE B 

 

 
Fig. 4: Difference Between KS and HPOP in Semi-Major Axis. 

 

 
Fig. 5: Difference between KS and HPOP in Eccentricity. 
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Fig. 6: Difference between KS and HPOP in Inclination. 

 

CASE C 

 

 
Fig. 7: Difference Between KS and HPOP in Semi-Major Axis. 

 

 

 
Fig. 8: Difference Between KS and HPOP in Eccentricity. 

 

 

 
Fig. 9: Difference between KS and HPOP in Inclination. 
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CASE D 

 
Fig. 10: Difference between KS and HPOP in Semi-Major Axis. 

 

 
Fig. 11: Difference between KS and HPOP in Eccentricity. 

 

 
Fig. 12: Difference between KS and HPOP in Inclination. 

 

Among all the test cases, the maximum difference between KS and HPOP theories absolute values of for 30 days in semi-major axis, 

eccentricity and inclination are found to be 0.838 km, 0.000015 and 0.000872 deg, respectively. Hence, from these all figures also, it is 

evident that the results obtained from KS theory are very well compared with HPOP results. The comparison shows that the KS method 

provides one of the best techniques for orbit prediction 
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