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Abstract 

 

Building on the foundation of the antigraviton-graviton theory (AGT), which was published recently, in this paper, we shall give a    

theoretical interpretation of the Hubble expansion of the universe, without adopting the dark matter hypothesis nor the dark  energy   

hypothesis. Our theoretical results may be summarized by two points.  Firstly, in contrast to Einstein’s general relativity theory (GRT), 

our AGT predicts that the universe will be expanding, provided that its average density is positive definite.  Secondly, our AGT has 

found that the universe may be divided into two spatial regions.  Defining the radius ratio as the ratio of the radius to the radius of the 

visible universe, it is found that when the radius ratio is less than 0.125, the expansion of the universe can be nearly exactly described by 

the Hubble formula.  When the radius ratio is between 0.125 and 0.64, the expansion rate is greater than that given by the Hubble      

formula.  And the theoretical Hubble expansion rate reaches its maximum when the radius ratio is at about 0.64. 
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1. Introduction 

The Hubble expansion of the universe was discovered in 1929 by 

the astronomer Edwin P. Hubble [1], who found that the recession 

velocity of a galaxy is linearly proportional to its distance. In other 

words, the rate at which two galaxies are receding from another 

one is proportional to their relative distance. For sufficiently   

distant galaxies, the recession velocities are comparable to that of 

light.  

In reference [2], we have derived an antigraviton-graviton theory 

(AGT), or a quantum gravity theory (QGT), for explaining the 

shape of the rotation curve of a typical spiral galaxy. On the basis 

of reference [2], below we shall give a theoretical explanation of 

the Hubble expansion of the universe, without using the dark  

matter hypothesis nor the dark energy hypothesis.  

2. Theory 

2.1. A model of the visible universe 

Let us assume that macroscopically, the mass distribution of   

universe is isotropic and uniform. Let the uniform average of  

density of matter be denoted as o , which is assumed to be equal 

to the measured average density. In other words, when the radius 

is large enough, the local anisotropies and non-uniformities of 

density will average out.   

 

The net gravitational effect of the mass distribution outside the 

visible universe on the visible universe is zero. Consequently in 

the following, we need only consider the mass distribution of the 

visible universe.  

2.2. Gravitational scale-length of the universe 

Let point O be the centre of the universe, and let the radius of the 

visible universe be AR . Thus 

A oR c , 

where c  is the speed of light, and o is the age of the universe. 

 

Let us adopt the definition of the radial centre of mass (RCM) as 

presented in reference [2].  For the universe, let us define the  

radius of its radial centre of mass (RCM) as the ratio of the first 

moment about its origin O to the total mass of the universe, i.e.: 

3 2A A4 4RCM o o0 0
  

R R
R R dR R dR  , 

 

where o  is the surface density as a function of the radius R. 

Simplifying, we have  

 

3 2A A
RCM o o0 0

  
R R

R R dR R dR  .                                   (1) 

 

From eq. (1), it can be shown by integral calculus that 

 

3 4RCM AR R .                                                                     (2) 

 

Hence all the mass of the universe may be considered              

concentrated in an infinitesimal thin spherical shell of              

radius 3 4RCM AR R . The centrifugal mean free path 

o, centrifugal of all the mass in this infinitesimal spherical shell 

to move outward is equal to the distance between the points at 

radius RCMR to the edge of the visible universe, which is equal 

to AR . Therefore 

 

o, centrifugal A RCM R R                                                    (3) 
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Substituting eq. (2) into eq. (3), we obtain 

 

4o, centrifugal A R                                                               (4) 

 

Similarly, the centripetal mean free path is  

 

3 4o, centripetal A o, centrifugal A  R R                         (5) 

 

From eq. (4) and eq. (5), the average of o, centripetal  and 

o, centrifugal is evaluated to be the average mean free path of the 

gravitons, which is equal to the fundamental wavelength o of the 

gravitons.  Thus,  

 

0.5o A R                                                                                  (6) 

 

In reference [2], it has been shown that, R , the gravitational 

scale-length of a mass distribution is equal to the fundamental 

quarter wavelength of the gravitons.  Using eq. (6), we have 

 

8AR R                                                                                  (7) 

2.3. The graviton wavelength as a function of the radius 

in the universe 

In reference [2], we have shown that, ( )A R  the expectation 

value of the graviton wavelength is given by the following     

equation 

 

( / ) 1o( ) 1A o
1 ln( / )o

 
  

 

R R
R R

R R
                                               (8) 

 

Combining eq. (7) and eq. (8), a graph of ( )A R is presented in 

Fig. 1. In this graph, the y-axis is expressed as a dimensionless 

ratio of the wavelength to AR  (the radius of the universe).    Sim-

ilarly, the x-axis is expressed as a dimensionless ratio of the radius 

R to AR . It is a plot of two dimensionless ratios.           Qualita-

tively, the graph shows that the graviton wavelength ratio increas-

es linearly with the radius until the radius is equal to the gravita-

tional scale-length R ; and then it rises more slowly to a maxi-

mum of 0.4091424 (7 sig. fig.) when the radius ratio is 1.0. 

 

Fig. 1: Graviton Wavelength versus Radius 

 

2.4. The Hubble speed 

By the principle of energy conservation, the sum of the kinetic 

energy (K.E.) and the gravitational potential energy (P.E.) of any 

astronomical object (galaxy, quasar, etc.) is a constant.  Let us 

assume that this constant is zero, we have  

 

K.E. + P.E.  = 0.                                                                           (9) 

 

Let the mass and the radial speed of an astronomical object be m  

and u  respectively.  From eq. (9), we obtain  

 

2
( ) 0q

2
  

mu
m R ,                                                               (10) 

 

where ( )q R is the quantum gravitational potential.  From eq. 

(10), we obtain  

 

2 2 ( )q u R .                                                                           (11) 

 

Using the equation for ( )q R , derived by reference [2], we have 

 

 ( )cosh ( )A2 2
G M R R Rq

u
R


,                                            (12) 

 

where Gq is quantum gravitational constant, R is the radial    dis-

tance of the astronomical object under consideration, ( )M R  is 

the central mass at radius R, and ( )A R is the expectation value 

of the graviton wavelength respectively. 

 

From eq. (12) and the meaning of ( )M R , it can be easily shown 

that  

 

 38 cosh A2

3

  


G R R Rq
u

R

  
.                                          (13) 

 

From eq. (13), we have  

 

 8 cosh A

3

  


G R Rq
u R

  
.                                           (14) 

 

If  R R ,  A  R = R, and we obtain 

 

 cosh A  R R = cosh (1.0)                                                    (15) 

 

Substituting eq. (15) into eq. (14), we get 

 

u = H R,                                                                                    (16) 

 

where H  = 
8 cosh(1.0)

3

Gq 
 =

8

3

Gn 
,                     (17) 

 

and Gn = cosh(1.0) Gq                                                              (18) 

 

It may be noted that eq. (16) is the usual theoretical equation for 

the Hubble law which was discovered by Edwin Hubble in 1929, 

but from our AGT, we know that the Hubble law is only         

applicable in the range of  R R .  

Next, if R R , from eq. (14), 
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 
 

cosh ( )A
o

cosh 1.0


R R
u H R


.                                                      (19) 

 

Dividing eq. (19) by c  the speed of light, we obtain  

 

 
 

cosh ( )Ao

cosh 1.0


R RH R

c


 ,                                                   (20) 

 

where  is the ratio of the expansion speed to the speed of light. 


u

c
 .                                                                                         (21) 

 

From eq. (16), since the Hubble speed equals the speed of light 

when the radius is equal to the radius of the visible universe AR , 

we have  

 

o Ac H R .                                                                                 (22) 

 

Substituting eq. (21) into eq. (19), 

 

 
 

cosh ( )A

cosh 1.0A


R RR

R


 .                                                      (23) 

 

Applying the condition that the  ratio is always less than 1.0, a 

plot of the  ratio (u c ) versus the radius ratio ( AR R ) is  pre-

sented in the thick-line curve of Fig. 2.  When the radius ratio 

increases from 0.0 to 0.6407417 (7 sig. fig.), the  ratio increases 

from 0.0 to 1.0; and the slope of the  ratio increases             mon-

otonically.  In comparison, a graph of the  ratio versus the radius 

ratio according to Hubble’s formula is presented in the dotted line 

of the same figure.  For the Hubble formula, when the radius ratio 

increases from 0.0 to 1.0, the  ratio increases     linearly from 0.0 

to 1.0. 
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Fig. 2: The Beta Ratio versus the Radius Ratio 

2.5. Relativistic correction 

In eq. (23) of section 2.4, relativistic correction has not yet been 

applied to the clock rate at radius R. Due to gravitational time 

dilation, there should be a blue-shift correction factor [3], which is 

equal to  

 

  2exp( / ) R cq .                                                                    (24) 

 

Substituting eq. (11) into eq. (24), the blue-shift correction factor 

is 

 2 2 2exp( 2 ) exp 0.5  u c                                                    (25) 

 

After applying this blue-shift correction, we obtain the blue-shift 

corrected beta ratio as 

 

 2exp 0.5corr     .                                                            (26) 

 

A plot of the corrected  ratio versus the radius ratio is presented 

in the thick-line graph of Fig. 3. In comparison, a graph of 

the  ratio versus the radius ratio according to Hubble’s formula is 

presented in the dotted line of the same figure. It may be noted 

that the corrected ratio reaches a maximum value of 0.6065307   

(7 sig. fig.), when the radius ratio is 0.6407417. Thus, our AGT 

predicts that the observed  ratio of an astronomical object (such 

as a galaxy, quasar or supernova) can only reach a maximum  

value of about 0.6065 (4 sig. fig.).  This is the prediction of our 

newly derived relativistic version of AGT. When the radius ratio 

is between zero to about 0.125, the corrected  ratio is almost 

equal to the Hubble  ratio (e.g. when the radius ratio is 0.125, 

the corrected  ratio is about 0.7782% less than that of the    

Hubble  ratio). This may be called the nearly “linear region,” 

where Hubble’s formula is nearly exact. 

 

Next, when the ratio is between 0.125 and 0.6407417 (7 sig. fig.), 

the corrected  ratio exceeds the Hubble   ratio. This is the “ac-

celerating region.”  The above is our quantitative theoretical re-

sults, and they await empirical comparison, which would require 

very high  ratio or high redshift (z) data. 

 

Fig. 3: The Corrected Beat Ratio versus the Radius Ratio 

3. Discussion 

Let us denote the present density of the universe by o  and the 

present critical density by c,o  respectively.  From Einstein’s 

general relativity theory (GRT), it can be inferred theoretically 

that there can be three possibilities.  Firstly, if o is larger 

than c,o , then the universe will be spatially finite and contracting.  

Secondly, if o is equal to c,o , then the universe will be      

Euclidean and expanding in a linear way, and the Hubble constant 

is related to the critical density c,o by the equation [4] 
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H =
8 c,o

3

Gn 
.                                                                    (27) 

Thirdly, if o is less than c,o , then the universe will be        

expanding in an accelerating way.  

 

Among these three possibilities, why is our universe nearly     

Euclidean and expanding almost in a linear way when the radius is 

relatively small?  Recent astronomical data indicates that when the 

distance is sufficiently far away, the expansion of our universe is 

accelerating.  The answer given by most astronomers is that for 

our universe, o happens to be nearly equal to c,o .  Thus, most 

astronomers believe that, in the linear region, dark matter exists in 

our universe, because the amount of luminous matter is           

insufficient to give us a o which is nearly equal to c,o .    

Moreover, most astronomers or astrophysicists explain the      

acceleration in the accelerating region of our universe by invoking 

dark energy also.  

4. Conclusion  

In sum, our theory has derived two notable results.  

 

Firstly, Einstein’s general relativity theory (GRT) allows three 

possibilities as described in sec. 3.  In contrast, our quantum   

gravity theory (QGT) or antigraviton-graviton theory (AGT)   

predicts that the universe will be expanding, provided that o is 

positive definite, see eq. (19) and (23).  With due respect to     

Einstein’s GRT, we should realize that it does not know about the 

existence of the antigravitons, and cannot take into account the 

cooperation between antigravitons and gravitons in gravitational 

interactions.  Thus it is not so surprising that our result is different 

from Albert Einstein’s GRT. 

 

Secondly, our AGT found that the universe may be divided into 

two spatial regions.  Defining the radius ratio as the ratio of the 

radius to the radius of the visible universe, it is found that when 

the radius ratio is less than 0.125, the expansion of the universe 

can be almost exactly described by the Hubble formula.  This 

region can be described as the “linear region.”  When the radius 

ratio is between 0.125 and 0.6407 (4 sig. fig.), the expansion rate 

is greater than that given by the Hubble formula.  This region can 

be called the “accelerating region.”  
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