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Abstract 

 

Using special relativity theory, it was discovered that to each graviton, there coexists its antiparticle, an antigraviton. Building on this 

discovery and quantum theory, a new quantum gravity theory (QGT) was invented, providing equations of the gravitational potential, the 

graviton wavelength, and the circular speed, without the dark matter hypothesis (DMH). According to this QGT, the gravitational scale-

length of a spiral galaxy depends on its mass distribution, being approximately equal to 1.5708 times the radius of its “radial center of 

mass”. Also Newtonian gravity theory (NGT) is of limited validity:  if the radius is less than the gravitational scale-length, NGT is exact; 

but if the radius is greater than the gravitational scale-length, it becomes inadequate, and is surpassed by QGT. When the theoretical 

rotation curve was compared with the rotation curve of the galaxy NGC6503, the QGT was verified within the rms error of the measured 

rotation speeds, 3.0 percent. It was also demonstrated how two formulas of general relativity theory (Schwarzschild metric, gravitational 

time dilation) may be revised by the QGT, and thus be upgraded to formulas of quantum general relativity theory. It is suggested the so-

called “dark matter” problem can be solved by discarding the DMH and adopting our new QGT. 

 
Keywords: Cosmology: Theory, Dark Matter, Galaxies: Kinematics and Dynamics, Galaxies: Individual (NGC6503), Gravitation, Large-Scale Structure 

of Universe. 

 

1. Introduction 

Before embarking on graviton physics, let us recall briefly the 

dark matter problem. In the early 1970s, the astronomer Rubin 

first adopted the concept of dark (non-luminous) matter in 

explaining the shape of the rotation curve of a typical spiral galaxy. 

In the late 1970s, more astronomers accepted the dark matter 

hypothesis in galaxy dynamics. They noticed that a typical mass 

model of a spiral galaxy, which assumes a fixed mass-to-light 

ratio, is only able to represent the observed rotation curve in the 

inner region, but fails in the outer region. When the radius R is 

large enough to contain nearly all the galactic mass, the orbital 

speed does not decrease in the Newtonian-Keplerian way 

(inversely as the square root of R ), but remains roughly constant. 

By the 1980s, most astronomers interpreted this puzzling 

discrepancy in the outer region as an evidence for the presence of 

dark matter in galaxies (Rubin 1983, Van Albada et al. 1985, Van 

Albada & Sancisi 1986, Kent 1987); but this mysterious 

discrepancy is still an unsolved problem. In the following, it will 

be shown that the dark matter problem can be solved by applying 

the two pillars of modern physics (relativity theory and quantum 

theory) plus a little innovative insight or discovery. 

Today it is commonly believed that the graviton (the boson which 

mediates the gravitational field) does not have an antiparticle, 

being similar to the photon of the electromagnetic field. In sec. 2, 

applying special relativity theory and symmetry consideration, it 

was discovered that the graviton coexists with its antiparticle, the 

antigraviton. From this discovery, using quantum theory, a new 

quantum gravity theory (QGT) was invented, deriving equations 

for the distance variations of the gravitational potential, the 

wavelength of gravitons, and the rotation speed, without adopting  

the DMH. According to this QGT, the gravitational scale-

length
o

R of a galaxy is related to its mass distribution, being equal 

to 0.5π times the radius of its radial center of mass.  Moreover, the 

validity of Newtonian gravity theory (NGT) is limited: if the 

radius R
o

R , NGT is exact; but if
o

R R , it becomes 

increasingly inaccurate, and is superseded by QGT. In sec. 3, the 

results of comparing the QGT with data from the spiral galaxy 

NGC6503 are presented.  In this astronomical test, the source of 

the gravitons and antigravitons was the galaxy NGC6503, and the 

detectors were the orbiting stars. The QGT was well verified as 

the standard deviation of the best-fitting curve from the rotation 

curve of NGC6503 is within the standard error of the measured 

rotation speeds, 3.0 percent. In sec. 4, seven topics are discussed: 

(1) the concept of negative mass; (2) the non-annihilation of the 

graviton by the antigraviton; (3) the finite wavelength of the 

graviton; (4) the non-zero rest mass of the graviton; (5) virtual 

mass amplification by antigravitons; (6) the Schwardzchild metric; 

and (7) gravitational time dilation. In sec. 5, the conclusions of 

this paper are drawn. 

2. Theory 

2.1. The existence of the antigraviton 

In a locally inertial frame of reference, let us consider a boson of 

the gravitational field.  It is traveling practically at the speed of 
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light c because its rest mass 
o

m is assumed to be extremely tiny, 

though non-zero. Let its energy, and momentum be E , 

and p respectively.  From special relativity theory (Forshaw & 

Smith 2009),  
2 4 2 2 2

o
E pm c c                                                                       (1) 

Solving for
o

m , 

2 2 2 2

o
m E p c c                                                                 (2) 

 

Eq. (2) may be interpreted as: if the positive solution corresponds 

to the rest mass of a graviton (


 ), the negative one corresponds 

to that of an antigraviton (


 ), or vice versa.  Thus if the names 

of graviton and antigraviton are interchanged, physical reality 

remains invariant, i.e., 


 and 


 are particle-antiparticle 

symmetric partners.  The prediction of negative mass by special 

relativity theory may seem to be a novelty or a joke, but if we 

believe what is mathematically possible is also physically possible, 

we should be bold enough to accept the idea of a negative mass or 

the concept of an antigraviton. 

2.2. The relative abundances of gravitons and 

antigravitons 

Consider a subset of gravitons (
s


 ) and antigravitons (

s


 ), in 

which the mass of each 


  is m , and the mass of each 


  is 

m . Let the de Broglie wavelength of each 


  be  , which is 

related to m by 

h cm                                                                                      (3) 

 

where h is Planck’s constant. In this subset, as the mass of each 


  is m , from eq. (3), the de Broglie wavelength of each 


  

is  .  Let the probabilities of 
s


 and 

s


  in this subset be and 

(1 ) respectively. If the names of 
s


 and 

s


  are interchanged, 

their respective probabilities become (1 ) and  . However, 

after the interchange of names, physical reality remains invariant.  

Hence the probabilities of 
s


 and 

s


 remain unchanged. 

Therefore, (1 )    , and 0.5  . This implies that to every 


  with mass m , there exists one


  with mass m  . Using eq. 

(3), it may be deduced that to each 


  with wavelength , there 

exists one


  with wavelength  . Since a set of 
s


 and 

s


  is a 

union of subsets, each with a special magnitude of wavelength, the 

above result can be generalized as: in any differential band of 

wavelengths ( ,  d     ),
s


 and 

s


  are equally abundant. 

The equal abundances of 
s


 and 

s


  points to the possibility that 

they are created by interacting masses in pairs. The net rest energy 

of such a 


 &


  pair is exactly zero (
2 2

o om c m c  ), 

consequently all the production energy is converted into kinetic 

energy, resulting in maximum energy efficiency in each 

gravitational interaction. 

2.3. The quantum gravitational potential 

Let the wavelength of a 


 be  . At a point P which is at 

radius R from a point mass M situated at the origin O, the Yukawa 

potential is (Yukawa 1935) 

q
( ) exp

G M R
R

R 



  

 
 
 

                                                    (4) 

where
q

G  is the quantum gravitational constant, and  may be 

regarded as the range of the potential. Because the names 


  and 


  are interchangeable, and as the 


  mediates a Yukawa 

potential ( )R


 , the coexisting


 , whose wavelength is  , 

should also mediate a Yukawa potential 

q
( ) exp

G M R
R

R 


  
 
 
 

                                                       (5) 

which is repulsive or antigravitational. 

In a galactic orbit of average radius R , let the expectation value of 

the wavelength of the 
s


 be

A
( )R , and that of the 

s


  

be
A
( )R . Since the 

s


 and 

s


  have the same probability 0.5, 

applying eq. (4) and (5), the quantum gravitational potential is 

 
q A A

q

( ) exp[ ( )] exp[ ( ) ]
( )

2

G M R R R R R
R

R

  
             (6.1) 

   
q A q A

q

( ) cosh / ( ) ( ) cosh / ( )
( )

G M R R R G M R R R
R

R R

 
    

         (6.2) 

Eq. (6.1) shows that, if 
s


 are interchanged with

s


 , the quantum 

potential
q
( )R  remains invariant. And eq. (6.2) shows that in 

evaluating
q
( )R , it is sufficient to consider either the 

wavelength of 
s


  or

s


 , for the cosh function is even.   

2.4. The fundamental wavelength of the gravitons in a 

spiral galaxy 

For a galaxy, let us define the radius of its radial center of mass 

(RCM) as the ratio of the first moment about the galactic axis to 

the total mass of the galaxy, i.e.: 
2

0 0RCM
2 ( ) 2 ( )R R R dR R RdR 

 
   , where ( )R  is the 

surface density as a function of the radius R. Simplifying, we have  
2

0 0RCM
( ) ( )R R R dR R RdR 

 
   .                                        (7) 

 

For a spiral galaxy, since its materials (stars and gas molecules) 

move in elliptical orbits, its RCM moves in an elliptical orbit in 

the galactic plane. Let the perimeter of the orbit of the RCM 

be
RCM

C , we have
RCM RCM

2πC R . As 
RCM

C is the average mean 

free path (mfp) of the orbiting materials, it may be equated with 

the mfp of the gravitons operating in the galaxy.  Thus the 

fundamental wavelength o of the galactic gravitons equals
RCM

C . 

o RCM RCM
2πC R                                                                   (8) 

 

As a corollary, denoting the quarter fundamental wavelength
o
/4  

by
o

R , from eq. (8), we obtain 

o o RCM RCM
4 0.5π 1.570796R R R   (7 sig. fig.)              (9) 

2.5. The expectation value of the graviton wavelength as 

a function of radius 

Let us consider the case when
o

R R . Assuming that graviton 

waves behave like sound waves in a resonance tube of length R, a 

resonance occurs when the tube length is equal to the quarter 
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wavelength
o

R of the waves. Hence, if
o

R R , the expectation 

value of the graviton wavelength is  

A o o
( )R R                                                                               (10) 

At the radius
o

R , from eq. (10), the cosh term in eq. (6.2) equals 

cosh (1.0), and the quantum potential reduces to the Newtonian 

potential.  Accordingly, the Newtonian gravitational constant
n

G is 

related to
q

G by 

n q q
cosh(1) 1.543081G G G   (7 sig. fig.)                       (11.1) 

q n n
cosh(1) 0.6480543G G G   (7 sig. fig.)                  (11.2) 

Thus the radius
o

R is within the inner region of a galaxy, where 

Newtonian gravity theory (NGT) is experimentally known to be 

exact. This implies that conversely, if
o

R R , the quantum 

potential in eq. (6.2) reduces to the Newtonian potential.  

Consequently, 

 
q n
cosh ( )G R R G                                                           (12) 

 

Eq. (12) is true only if its cosh term equals a constant, which in 

turn implies that 

A 1
( )R c R                                                                              (13) 

where
1

c  is a constant of proportionality. From eq. (10) and (13), 

we have, in this NGT region  

1
1c                                                                                          (14) 

 

Substituting eq. (14) into eq. (13), we have, in this Newtonian 

region, 

A
( )R R                                                                              (15.1) 

A
( )

1
d R

dR


                                                                           (15.2) 

 

In the region
o

R R , let us proceed by quantum theory. Denoting 

the increase of 
A
( )R  when the radius increases from

o
R to R  

by
A
( )R , we get 

A o A
( ) ( )R R R                                                               (16) 

 

Next let us derive an expression for the probability density of the 

gravitons as a function of  , and then as a function of R . As 

gravitons are bosons, their probability density ( )B E at 

temperature T  for the state with energy E  is  

1
( )

exp( ) 1
B E

E kT



                                                          (17) 

where k  is Boltzmann’s constant (Eisberg 1961).  E is related 

to  by  

E h hc                                                                          (18) 

 

where  is the frequency of the state. Substituting eq. (18) into 

(17), we obtain the probability density as a function of the 

wavelength   

1
( )

exp( ) 1
P

hc kT






                                                     (19) 

 

Assuming that  >> /hc kT , by series expansion of the 

exponential function, and taking the first order approximation, we 

have 

1 1
( ) ( ) /P P                                                                    (20) 

where
1 o

R  . For gravitons in an elliptical orbit with average 

radius R , let their wavelength be  , which being equal to their 

range or mean free path, equals the perimeter of the orbit. 

2πR                                                                                     (21) 

 

Substituting eq. (21) into eq. (20), we obtain the probability 

density as a function of R ,  

o o
( ) ( )P R R P R R                                                                (22) 

 

In terms of ( )P R , ( )R is defined as 

o o
A
( ) ( ) ( ) ( )

R R

R R
R R P R dR P R dR                                  (23) 

 

Substituting eq. (21) and (22) into eq. (23), and evaluating the 

integrals, we get 

o

a

2 o

( )
ln( / )

R R
R

c R R



 


                                                     (24) 

where 2c is a constant of integration. Substituting eq. (24) into eq. 

(16), we have 

o

A o

2 o

( )
ln( / )

R R
R R

c R R



 


                                               (25) 

Applying the condition of continuity of 
A
( )d R

dR


at

o
R R , it can 

be shown that 2 1c  .  Consequently if
o

R R , 

o

A o

o

( / ) 1
( ) 1

1 ln( / )

R R
R R

R R



 



 
 
 

                                          (26) 

 

The condition of eq. (15.1), namely
A

( )R R  , is not satisfied by 

eq. (26), thus the region 
o

R R is beyond the Newtonian region.  

Accordingly, the radius
o

R separates the inner region from the 

outer region definitively; and the inner region
o

R R may be 

called the NGT region, while the outer region
o

R R may be 

called the QGT region. Moreover, from the term
o

( )R R  in eq. 

(26), we may define
o

R as the gravitational scale-length of a galaxy.   

2.6. The circular speed of a star in a spiral galaxy 

In Newtonian gravity, the gravitational potential 
n
( )R  at a 

point P, which is at a radius R  from a central mass ( )M R at the 

origin O, is 

n

n

( )
( )

G M R
R

R
                                                                 (27) 

where
n

G  is the Newtonian gravitational constant. For a star in an 

orbit of average radius R , its Newtonian circular speed is (Binney 

& Tremaine 2008)  

n

n n

( )
( ) ( )

G M R
V R R

R
                                            (28) 
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Analogously, applying eq. (6.2), the quantum circular speed is  

q A

q q

( ) cosh[ / ( )]
( ) ( )

G M R R R
V R R

R


               (29) 

 

If
o

R R , combining eq. (15.1), (28) and (29), we obtain  

q n
( ) ( )V R V R                                                                          (30) 

 

i.e. QGT reduces to NGT, as expected. 

If
o

R R , from eq. (11.1), (28) and (29), we have 

A

q n

cosh[ ( ) ]
( ) ( )

cosh(1)

R R
V R V R


                                          (31) 

Eq. (31) implies that as R increases beyond
o

R , the quantum speed 

becomes increasingly greater than the Newtonian speed, as a result 

of the cooperation of gravitons with antigravitons. From eq. (26) 

and (31), it can be shown that in the limit 

q n

o

,  
2 cosh(1)

R
R V V

R
                                              (32) 

3. Comparing theory with the data of 

NGC6503 

The data of the rotation curve of the spiral galaxy NGC6503, in 

the Ph.D. thesis of Begeman (1987), were chosen for comparison 

with our quantum gravity theory (QGT).  Lying in the Local Void 

(Finlay 2003), NGC6503 is an isolated galaxy, relatively free from 

gravitational disturbances from other galaxies. 

3.1. Mass distributions 

In analyzing the mass distributions of NGC6503, both the gaseous 

and stellar components were taken into account. 

3.1.1. Gas 

The radial distribution of HI surface density was obtained from the 

photometric data provided by Wevers et al. (1986). For improved 

accuracy, the surface density function is represented by a sum of 

two exponential functions, each with its own range, central 

extrapolated surface density
o

L , and scale-length
d

R , as shown in 

Table 1. The rms deviation of the 25 photometric data points from 

the fitted function is 4.4 per cent. 

 
Table 1: Photometry of Hydrogen Gas in NGC 6503 

Range (arcsec) 
o

L ( M
e

2
pc


) 

d
R  (arcsec) 

405.6R   6.063 0.016  300.7  17.1 

405.6R   25.62  2.26 145.4  12.8 

 

Adopting a distance of 5.2 Mpc for NGC 6503 from the paper of 

Karachentsev & Sharina (1997), and using an optically thin 

model,
gas

( )M R , the mass of gas within a radius of R , was 

calculated as a function of R . Next, the total mass of the gas 

envelope was evaluated to be (7.25  0.79)
8
M10

e
, which 

agrees with the value of 
8
M7.0 10

e
 given by Wevers et al. 

Then, the radius of the radial center of mass (RCM) of the gas 

envelope was computed to be (730.6  49.5) arcsec. And the 

circular velocity 
gas

( )V R curve due to the gas envelope, according 

to Newtonian gravity, is presented in the lower curve of Fig. 1. 

3.1.2. Stars 

For radii less than 134.5 arcsec, the red-band photometric data of 

the stars were obtained from Bottema (1989); and for larger radii, 

were converted from Wevers et al. (1986) by a formula derived by 

Bottema (1989), with an accuracy of better than 0.15 mag. For 

higher precision, the surface brightness function is represented by 

a sum of three exponential functions, each with its own range, 

central extrapolated surface brightness
o

L , and scale-length
d

R , as 

shown in Table 2. The standard deviation of the 67 photometric 

data points from the fitted function is 2.14 per cent. 

 
Table 2: Red Band Photometry of the Stars in NGC6503 

Range (arcsec) 
o

L  (mag
2

arcsec


) 
d

R (arcsec) 

<5.8 17.93  0.04 7.91  0.34 

5.8-193.5 18.59  0.03 44.79  0.46 

>193.5 20.58  0.16 77.62  1.40 

 

The above data have not been corrected for the inclination of NGC 

6503. According to Begeman (1987), the average inclination of 

NGC 6503 was 73.8
o
. Wevers et al. (1986) finished taking data on 

1979 August 31, on which date the inclination of the Ecliptic 

was 23.21
o

, so the average angle between the galactic plane of 

NGC 6503 and the Ecliptic was 50.59
o

. The inclination factor, 

secant ( 50.59
o

), was used to obtain face-on values of the surface 

brightness. Having analyzed the surface brightness function into a 

sum of three exponential functions, by assuming that the mass-to-

light (M/L) ratio is constant for different brightness, an optically 

thin model was used to calculate
red

( )M R , the mass distribution 

curve of the red-band stars. The purpose of using exponential 

functions is that their products with polynomial functions are 

directly integrable without resorting to numerical integration, 

hence ensuring higher mathematical accuracy in computing mass 

or the radial center of mass (RCM). Taking the inclination factor 

into account, the total mass of the red stars was computed to be 

(2.416  0.091)
10

M10
e

. The radius of the RCM of the red stars 

was calculated to be (76.34  1.17) arcsec, which equals the radius 

of the RCM of all the stars, for a constant M/L ratio. 

3.2. The Newtonian circular speed curve 

From Begeman’s rotation curve of NGC 6503, it is estimated that 

the circular speed reaches a maximum when radius is 137.3 arcsec. 

For the first 5 data points, the radii were less than 125 arcsec, 

Newtonian gravity theory was tentatively assumed to be exact. Let 

red
 be the M/L ratio for the red stars, which is related to the 

central mass ( )M R by 

red red gas
( ) ( ) ( )M R M R M R                                              (33) 

Using eq. (28) and (33), and the condition that the Newtonian 

circular speed agrees with the observed speed of the fifth point 

( 125 arcsecR  ), a first solution of 
red

  is 1.401.  Using an 

iterative procedure, a more precise value of 
red

  for generating 

the best-fitting curve of the whole range (25-775 arcsec) was 

determined to be 1.403. Using this M/L ratio, the mass of all the 

stars was calculated to be (3.390  0.128)
10

M10
e

. Next, the 

Newtonian rotation curve due to stars,
stars

( )V R  , is presented in 

the upper curve of Fig. 1. Then, the Newtonian rotation curve 

( )nV R  due to both stars and gas is shown in the lower curve of 

Fig. 3.   

 



International Journal of Advanced Astronomy 5 

 

Fig.1: Rotation Curves Calculated from Photometric Data 

 

Then the Newtonian rotation curve ( )nV R  due to both stars and 

gas, is shown in the lower curve of Fig. 3.   

3.3. The quantum circular speed curve 

From the above results of the masses of the gas envelope and all 

the stars, plus the radii of their radial centers of mass, the radius of 

the galactic RCM of NGC6503 was determined to be 

(90.04  1.63) arcsec. Applying eq. (8), the gravitational scale-

length
o

R of the galaxy was evaluated to be (141.4  2.56) arcsec, 

validating our earlier assumption in sec. 3.2 that radii less than 

125 arcsec are within the Newtonian region. Using eq. (15.1) 

for
o

R R , and eq. (26) for
o

R R , the graviton 

wavelength
A
( )R curve was calculated, and presented in Fig. 2. 

The best-fitting quantum circular speed ( )qV R curve, with a M/L 

ratio of 1.403, was computed from eq. (31) and presented in the 

full-line curve of Fig. 3. 

 
Fig. 2: Graviton Wavelength as a Function of Radius 
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Fig. 3: Theory versus Data of NGC6503 

3.4. Verification of the quantum gravity theory 

In Fig. 3, the observed rotation curve of NGC6503 is compared 

with two theoretical curves, the quantum gravity curve and the 

Newtonian gravity curve. In the inner region (
o

R R = 141.4 

arcsec), the quantum curve, which reduces to the Newtonian curve 

here, is in agreement with the observed circular speeds, within 

observational errors.  After the observed rotation speed 

obV reaches its maximum (R = 137.3 arcsec), it declines 

monotonically, though more and more gradually. In the outer 

region (
o

R R ) the quantum gravity curve agrees with the 

measured speeds, and is increasingly better than the Newtonian 

gravity curve. For the entire experimental range of 25.0 to 775.0 

arcsec, the standard deviation of the quantum circular speeds qV  

from the observed circular speeds obV  is 3.0 (2.99) per cent, 

within the rms error of the observed speeds, 3.0 (3.04) per cent.   

For an illustration of the quantitative difference between QGT and 

NGT in the outer region, the two theoretical curves were 

compared at the radii of 325, 500, and 750 arcsec.  The percentage 

differences of the quantum speed qV  from the Newtonian speed 

nV  (with qV  as denominator) at these radii are respectively 13.23, 

25.00, 36.87 per cent. 

4. Discussions 

4.1. The concept of negative mass 

In order to explain the concept of negative mass, let us consider a 

thought experiment.  Let a gravitational force be applied 

simultaneously to a graviton with mass m and an antigraviton 

with mass m , the two accelerations will have the same 

magnitude but opposite directions.    

4.2. The non-annihilation of a graviton by an 

antigraviton 

Let a graviton be brought near to an antigraviton, they repel each 

other because the gravitational force between them is repulsive. So 

as they come near each other, they do not annihilate one another, 

unlike the electrical case of a positron and an electron. 

4.3. The Finite Wavelength of the Graviton 

The quarter fundamental wavelength of the gravitons of the galaxy 

NGC6503 was determined to be 141.5 arcsec. As the galaxy 
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NGC6503 was at a distance of 5.2 Mpc, the fundamental 

wavelength
o of the gravitons was 14.27 kpc or

17
4.402 10 m . 

This result implies that the wavelength of the graviton is finite, 

contrary to the common belief that it is infinite.   

4.4. The non-zero rest mass of the graviton 

Using the relation m h c for a relativistic particle, the 

expectation value of the dynamic mass of the gravitons in 

NGC6503 is computed to be
53

5.021 10 kg


 . This implies that the 

rest mass of the graviton must be non-zero, otherwise the dynamic 

mass would be exactly zero.  This result contradicts the common 

idea that rest mass of the graviton is exactly zero. 

4.5. Virtual mass amplification by antigravitons 

If
o

R R , from eq. (6.2), (15.1), and (27), the ratio of the 

quantum and Newtonian gravitational potentials can be written as  

q

n

( ) ( ) cosh[ ( )] cosh(1)

( ) ( )

R M R R R

R M R





                           (34) 

 

By comparing the numerator and the denominator of the right-

hand side of eq. (34), it can be seen that the effect of the 

cooperation of antigravitons with gravitons is that the quantum 

potential is equivalent to a Newtonian potential, in which the 

central mass ( )M R has been multiplied by a factor 

of  cosh[ ( )] cosh(1)R R . For several decades before the 

discovery of the antigravitons, this virtual mass-amplification 

effect had been misunderstood by supporters of the dark matter 

hypothesis as an evidence of the existence of dark matter. 

4.6. The Schwarzschild metric 

In order to illustrate the theoretical power of the quantum gravity 

theory (QGT), let us consider the Schwarzschild metric, as an 

example of showing how a formula in general relativity theory 

(GRT), which contains a gravitational potential term, may be 

revised by QGT. In the empty space outside a static point mass 

located at the origin, according to GRT, the metric equation at a 

point P with the spherical-polar coordinate ( R ,  , ) is:  

2

2 2 2 2 2 2 2 2 2 2

2 2

2 ( ) d
d d d 1 d sin d

1 2 ( ) /

R R
s c c t R R

c R c
   


     

 

 
 
 

   (35) 

 

where  is the polar angle,   is the azimuth angle, ds  is the line 

element,   is the proper time, t  is the local time coordinate, 

and ( )R  is the gravitational potential at P. Hence, for i , j = 1-4, 

the elements of the metric tensor are (Kenyon 1990):  

If i j , 0ijg  ; and 

1

2 2 2

11 22 33 442 2
; ;;

2 ( ) 2 ( )
1 1 sin 

R R
g g g R g R

c c




 
        
   
   
   

     (36) 

 

In GRT, the gravitational potential ( )R in eq. (36) is equated 

with the Newtonian potential
n
( )R , as given by eq. (27). 

However, in QGT, ( )R is identified with the quantum 

potential ( )
q

R , as given by eq. (6.2). If eq. (6.2) is substituted 

into eq. (36), a GRT formula of the Schwarzschild metric tensor 

will be transformed into a quantum general relativity theory 

(QGRT) formula of the metric tensor outside a point mass. 

4.7. Gravitational time dilation  

To further demonstrate the theoretical ability of QGT, let us 

consider gravitational time dilation, as an example of showing 

how a GRT formula, which contains gravitational potential terms, 

may be amended by QGT. Let the gravitational potential at two 

points 
1

P  and 
2

P  be 
1

  and 
2

  respectively, and let the rates of 

two clocks placed at 
1

P  and 
2

P  be
1

f  and 
2

f  respectively. 

According to GRT, the ratio of the clock rates is (Rindler 1977) 

  22

1 2

1

exp
f

c
f
                                                        (37) 

In GRT, the two gravitational potential terms
1

 and
2

 in eq. 

(37) are equated with Newtonian potentials; in QGT, the 

gravitational potential terms are identified with the quantum 

potentials. In particular, if 
1

P  and 
2

P  are two points at radii
1

R  

and 
2

R  from the center of a galaxy, by using eq. (6.2) twice, we 

obtain  

q2 2 2 a 2 1 1 a 1

2

1 2 1

( ) cosh[ ( )] ( ) cosh[ ( )]
exp

Gf M R R R M R R R

f c R R

 
 

  
  

  

 (38) 

 

In this way, a GRT formula of gravitational time dilation has been 

upgraded into a QGRT formula. 

5. Conclusions 

The main results of this paper may be summarized as follows. 

1) Using special relativity theory, it was discovered that to each 

graviton with mass m and wavelength  , there coexists an 

antigraviton with mass m  and wavelength  . 

2) The graviton has a finite wavelength, and a non-zero rest mass.  

As a corollary, the antigraviton has a finite, negative 

wavelength, and a non-zero, negative rest mass. 

3) From the discovery of the antigraviton, by applying quantum 

theory, a new quantum gravity theory (QGT) has been derived, 

providing two core formulas: one for the gravitational 

potential, and another for the graviton wavelength, as 

functions of the radius R.   

4) From these two core formulas, formulas for related dynamical 

variables may be derived.  For example, gravitational 

acceleration can be calculated as the gradient of the 

gravitational potential.  In this paper, formulas of the circular 

speed, the Schwarzschild metric tensor, and gravitational time 

dilation have been presented. 

5) The gravitational scale-length
o

R of a spiral galaxy is related to 

its mass distribution, and is equal to 0.5π (  1.5708) times 

the radius of its radial center of mass.   

6) Newtonian gravity theory (NGT) is partially true.  If the 

radius
o

R R , it is exact, as QGT reduces to it; if
o

R R , 

NGT is inadequate, and has been superseded by QGT.  The 

inner region
o

R R may be called the NGT region, while the 

outer region
o

R R may be called the QGT region. 

7) The Newtonian gravitational constant 
n

G is applicable only in 

the NGT region, but the newly discovered quantum 

gravitational constant 
q

G is applicable universally, and 

q n
0.6480543G G (7 sig. fig.). 

8) When the QGT was compared with the data of the rotation 

curve of the galaxy NGC 6503, the theory was verified within 

the standard error of the observed rotation speeds, 3.0 per cent.  

Checking how well the QGT is supported by the data of other 

spiral galaxies (e.g. NGC2403, NGC3198 etc.) is a good 

project for further study. 
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9) In the QGT region of a galaxy, an antigravity effect due to the 

antigravitons is a virtual amplification of the central mass.  

Before the discovery of the antigravitons, this effect has been 

misunderstood by many for about four decades, as an evidence 

of the existence of dark matter in galaxies.  

10) Our new QGT was solidly built on two fundamental pillars of 

modern physics, viz. relativity theory (RT) and quantum 

theory (QT).  Our motivation is not to challenge the pillars of 

modern physics but it is a clarification of logical implications 

of these two pillars.   

11) With two concrete examples, it has been demonstrated that the 

QGT can be used to revise formulas of general relativity 

theory, and transform them into those of a quantum general 

relativity theory. 

12) Since the new QGT was developed without the ad hoc dark 

matter hypothesis (DMH), the successful verification of the 

QGT implies that the DMH is unnecessary in galaxy dynamics.  

It is suggested the so-called “dark matter” problem can be 

solved by relinquishing the DMH and adopting our new QGT, 

or antigraviton-graviton theory.  It seems that this theory 

would become a significant development in gravitational 

physics.  
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