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Abstract

A new non-singular analytical theory with respect to the Earth’s zonal harmonic terms J2, J3, J4 has been developed for short-periodic
motion, by analytically integrating the uniformly regular KS canonical equations of motion using generalized eccentric anomaly ‘E’ as
the independent variable. Only one of the eight equations need to be integrated analytically to generate the state vector, due to the sym-
metry in the equations of motion, and the computation for the other equations is done by changing the initial conditions. King-Hele’s
expression for radial distance ‘r* with Jz is also considered in generating the solution. The results obtained from the analytical expres-
sions in a single step during half a revolution match quite well with numerically integrated values. Numerical results also indicate that the
solution is reasonably accurate for a wide range of orbital elements during half a revolution and is an improvement over Sharon et al. [17]
theory, which is generated in terms of KS regular elements. It can be used for studying the short-term relative motion of two or more
space objects and in collision avoidance studies of space objects. It can be also useful for onboard computation in the navigation and
guidance packages.

Keywords: Hamilton’s Equations of Motion; Uniformly Regular KS Canonical Elements; Earth’s Oblateness; Short-Term Orbit Predictions; Analytical
Integration.

1. Introduction

In the artificial satellite theory, the motion of a satellite under the effect of Earth’s oblateness, namely the second zonal harmonic Jz in the
gravitational potential field is known as the main problem. Any Earth satellite mission requires precise orbit computation under the influ-
ence of this dominating perturbation. The non-integrability dynamics of the J. problem [2] allows the avenue for analytical theories to be
developed. In the past, several authors had treated this problem to obtain closed form solutions using different methods. Several analyti-
cal theories for the motion of Earth's satellite under the effect of Earth's first few zonal harmonic terms are available in the literature.
Some of the notable are by [10], [12], [6], [3], [1], [11] and [7].

The KS transformation regularizes the non-linear equations of motion and converts into linear differential equations of a harmonic oscil-
lator. KS formulation was used by [5] and [9] for short-term orbit predictions with Jz effect.

The KS uniform regular canonical equations of motion [19] are a particular canonical form where all the ten elements are constant for
unperturbed two-body problem and are applicable to elliptic, parabolic and hyperbolic orbital motion. In [13] these equations were nu-
merically integrated to obtain accurate orbits under the effect of Earth’s oblateness with zonal harmonic terms up to J3s. Analytical theory
in terms of KS elements with Jz [14] and [16], and with J3 and J4 [15] was developed for short-term orbit predictions. [8] analytically
integrated the uniformly regular KS canonical elements with Earth’s zonal harmonics J2, J3 and Js. The independent variable, fictitious
time ‘s’ given by dt/ds = r with t and r being the physical time and radial distance, respectively, and used for analytical integration, re-
sulted in complicated integrals. Because of the complexity of the integrals in evaluation for practical problems, the utility of the analyti-
cal solution was limited for operational purposes.

{18] developed a new non-singular analytical solution with Jz2 in close form in eccentricity ‘e’ for short-term orbit predictions by analyti-
cally integrating the uniformly regular KS canonical equations of motion, using the generalized eccentric anomaly ‘E’ as the independent
variable. The integrals are found to be much simpler than obtained in [8].

In this paper, the analytical solution of [18] is improved by using King-Hele’s expression [10] for radial distance r as function of Jz. Fur-
ther, new non-singular analytical solutions with Jzand Js in close form in eccentricity and inclination for short-term orbit predictions by
analytically integrating the uniformly regular KS canonical equations of motion, using the generalized eccentric anomaly ‘E’ as the inde-
pendent variable are developed. Numerical study has been carried out for a wide range of orbital parameters. The theory is found to pro-
vide reasonably accurate results over half a revolution.
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The solutions can have number of applications. It can be used for studying the short-term relative motion of two or more space objects
and in collision avoidance studies of space objects and generation of mean orbital elements. It can be also useful for onboard computa-
tion in the navigation and guidance packages, where the modeling of J. effect becomes necessary.

2. Equations of motion

The K-S uniformly regular canonical equations of motion in terms of fictitious time s are [13], [18]

doj _ﬁ dp; _ ﬁ o
TS T as — aerfori=01234 .

The relation between s and E is given by

E= 2\/0(_05 )

Equation (1) in terms of E can be written as

di _ OH (ds daj _ _ 0H (ds

dE  dg (dE)' dE  ap; (dE) ’ @)
Where

ds _ 1

dE ~ 2 o

= 1 K?

H= Z{Zﬁzl ug (o) JV (i) — " 4)

When the perturbation due to Earth’s oblateness J2 is considered:
H= %(rv —-K?) (5)
Perturbing potential,

V(i) = 55510 (2) Palcosv),

Where
cosv ==,
r

In particular

_ KR 2
V, = Yo [-1 4+ 3 cos?v],

_ KRz 3
V; = 5 [-3 cosvu + 5cos3v],

KZRY], 2 4

Vv, = pyc [3 —30cos?v + 35 cos*v],

h = 20, = () - (F2) v,

2

(ug—Z) =—2(n+1)V,

With
o= () i (5)— o8 (2 wi = (e sin(5) + 1cos 2),
a; = (JWT_IO) sin (g) — u; cos (g),

dh dt
E=0,1‘=E=ulz+u22+u32+u42,

X, ¥,2) =Ly, xy,2) = 2L(Ww/r
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Uy —Uz —Uz Uy

L) = U Uy —uy —ug
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X = (X1,X3,%X3) = L(Wu,

r=+(x%+x3+x2)=u?+ul+ul+u?

Where h, K?, R, E, 1, Jn are total energy, gravitational parameter, Earth’s equatorial radius, eccentric anomaly, radial distance and nth

zonal harmonic term of Earth, respectively.
2.1. Initial conditions
w+u=(r+x)/2,

u; = (Xu; + x3u,)/(r+ x4),

uz = (xguy — Xauy) /(r + 1),
Forx; =0,
wZ+ui=0-x)/2,

ug = (Xzuz +x3u3)/(r — x1),

uy = (xguy — Xpu3)/(r — xq).
Furthermore,

wy = (ugX; + X, + uzks)/2,
wy = (—Uz%y + ugk; + usks)/2,
w3 = (—uzX; — UsXp +uiX3)/2,

Wy = (U4).(1 - U3).(2 + uZ).(3)/2.

3. Analytical integration

The right-hand side of the equation for ], can be written as

0H ds _ K?R?J, (ii 3x3 0X3  6X3 Br)

da; dE 8/ap \r*da; r* do; 15 Ao/’
s _ KRy (101 310 _ 6 Or)
OBidE ~ 8Jap \r30B;  rt 9B; 1S 9B;
For J5:

0H ds _ 3]3K°R® 1 0x3 , 4%z Or  5x3 X3

EdE 16 Ao r* da; r_saoci ré da;

9H ds __ 3]3K*R® [ 1 0x3 |, 4xg3 Or | 5x3 9xs

9B;dE  16Jag L r*ap; | 15 ap; | 16 9B;

ForJ,:

OH ds _ ]4KZR4[ 3 dr  15x30x3 , 45x% Or

da; dE 16,/ag rs daj ré do; r’ dai

0H ds _ J,K°R* [ 3 dr  15x30x3 , 45x3% Or
aB;dE ~ 16a, L rSap; 6 ap; 7 9p;
Where

X3 =ag +a, cosE +a,sinkE,

10x3 ar

r’ 6ai]’

10x3 ar

r7 6Bi]'

35x3 0x3  70x% or ]

r8 aBi r? aBi

35x3 dx3  70x% 0r]

x3 = by + by cosE + b,cos?E + by sinE + b, sin E cosE,

3 _

X3 = ¢y + ¢,cosE + ¢, cos? E + c5 cos® E + ¢, SinE + c5 sin EcosE + ¢¢ sin E cos? E
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= dg + dycosE + d, cos? E + d; cos® E + d, cos? E + dg sin E + dg sin EcosE + d; sin E cos? E + dgsin E cos® E

<
[N
|

1
ap = 003 + o0y + ;0(8183 + B2B4)
1
a; = 003 + 00, — ;0(3133 + B2B4)
-1
a; = E(%Bs + Brag + azfs + Brou)

bo = aoz + 322

b; = 2apa,

Co = agbg + azbs

c; = agby +a;by +ayb,
¢, = agb, +a;b; —ayb;
c3 = a;b, —azby

¢y = apbz +azby

Cs = agby + a;bz +a3by
Ce = a1by + a3b,

do = by? + bs?

d; = 2(bgbg + bzby)

d, = by —bs% 4+ b,% 4 2byb,
ds = 2(b;b, — bsb,)

d, =b,% —b,?

ds = 2bgbs

de = 2(boby + by b3)

d; = 2(byby + bybs)

dg = 2b,b,

Substituting the values of x5, x3 ,x3and x% into the equations (6), (8) and (10), we get

) 2p2 . .
% = —]Zi{/a_lz r%{ g) + qgl) cosE + q(zl) sin E} + %{g(()k) + ggk)cos E+ ggk) cos?E + ggk)sin E+ gik)sin E cos E} - r%{fél) + fl(l)cos E+
fz(i) cos?E + f3(i)cos3 E+ ff) sinE + fs(i)sin EcosE + féi)sin E cos? E}] (12)
day _ 3LKPRI[1( (9, () ® N OINO) 0 o op 5 (00
TR - [—r—4{qo +q;° cosE+q, smE}+r—5{g0 + g, cosE + g, cos?E + g;’sinE + g, smEcosE}+r—6{f0 +

fl(k)cos E+ fz(k) cos?E + fefk)cos3 E+ fik) sinE + fs(k)sin EcosE + fék)sin E cos? E} - ?{hg) + hg)cos E+ hs) cos?E + hg)cos3 E+

hf}i)cos4 E+ hg) sinE + héi)sin EcosE + hgi)sin Ecos?E + hg)sin E cos® E}] (13)
. 2R4 - . . )
'3;;4 = % - %{qg) +q% cosE + qf sin E} - g{g(()k) +gMcosE + g cos? E + g®sinE + gsin E cos E} + ‘;—f {fél) +

fl(i)cos E+ fz(i) cos?E + féi)cos3 E+ ff) sinE + fs(i)sin EcosE + féi)sin E cos? E} + i—:{hgk) + hgk)cos E+ hgk) cos?E + hgk)cos3 E+
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hf,k)(:os4 E+ hgk) sinE + hék)sin EcosE + hgk)sin Ecos?E + hék)sin E cos? E} - Z—S{lg) + lgi)cos E+ lg) cos?E + lgi)cos3 E+
l‘(:)cos4 E+ lg)cos5 E +lg) sinE + lgi)sin EcosE + lg)sin Ecos?E + l((;)sin Ecos3E + liigsin E cos* E}] , (14)
Where in equations (6), (8) and (10), we have

W _B O _-b O _-a
qo —uo,ql - aolqz _\/a_ol

And in equations (7), (9), (11), we have

| | .
4 =apa;” = a,q;” =72

Also, k =i+2

95’ = aoag” + axaf’,
9" = arqs’ +aoq,”,
95" = aq” - azq5”,

99 = ayq{’ + apq’,

9 = a,q + a,q®",
2 = boq? + byqs’,
£O = b1q$ + bog® + byq”,
fz(i) = bzq(()i) + b1Q§i) - b3q§i),
£O = b,q® = byg,
£ = byql + boql”,

2 = baag’ + byay” + byqy”,

£ = by + by,

K = coa® + caa
0 = cua? + cod? + s

hgi) = 026130 + C1CI§D +(c6 = C4)q§i)
O = cag® + caa® = csa

K = cag® = caa

K = cua® + cor?

K = csa® 4 caa + cua

O = coafd + csa? + caa!

K = et + car?

19 = doq” + dsqi?”

I = digg” + doa;” + degy”

I = dogy” + dray” — dsag” + dyq3”
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l:(;) d q(L) +d2q(0 déq(L) +d8q(t)
l(l) d q +d3q(l) d7q(L)

lgl) d q(t) dgq(L)

lg) d q(t) +d5q(1)

lgl) d q(L) +d5q(l) +d1q(L)

lg) d q(t) +d6q(1) +dzq(t)

lgt) d q(t) +d7q(1) +d3q(1)

19 = dug® + dyef?

On substituting r = a(1 — e cos E) into equations (12), (13), (14) and integrating it analytically, we get

2p2 s .
Aa; = K*R?J, [ ® A0+ q(l) AL+ q(t) ALy 3 {g(()k) /\2°+g(k) AL+ g(k) Ai°+g(k) A21+ gl /\11} ¥ {fo(l) A(S)0+f1(l) AL+

8a3J_
fz(l) /\§°+f3(l) o+f(l) f(l) ALt f(l) /\21}] (15)
_ 3R [ f () ) k) af ® ® ® ® 5 (k) *)
Aa; = 1630[_0(14[ {a890° + (P10 + qS2 431} + 2{g$? 220 + g 410 + 0020 + g 231+ a1} + S{f00L + £ 210 +
£ 820+ 10 430 + (P00 + £080 4+ 10 42} = 2P % + P 430 + nP 420+ hP 4 + b 480 + nP A9t +

B A+ 1P 431+ 1 a31)] (16)

_ Jak?R® W) ) k) ® ® ® ® ® ®) )
Aai_1;\/a—0a5[ 3{q 22 4 8410 4 g A(S)l} {gl/l00+gl AL 4 gD 20 4 gD po1 gl/lll} {f 290 + £ p10 4
£29020 4 £ 230 + (P49 + (080 4 £ 42+ 2{RP AP + 1P 210 + hP 420+ 1 430 + h 48 + nPAG +

RO +hP 43+ 1S 43} = 20490 + 10 43° + 10 430 +19 43° + 1P 48° + 19 430 1P 43 + 1P A5 + 10231 +10 231 +

19 481} . (17
4. Expression for radial distance ‘r’ in terms of J2

From King-Hele [10]

%=L [1+ecos9+§]2V*]. (18)

2-5 sin?i sm i
2

Ve =17R? | cos(26 + 2w)]. (19)

V*is the change in the radial distance. On simplification, we get

2p2 2 2
V*zLR [2_1651111_'_3(5)]’ (20)

2 3 3\r

where
z . . .
(;) = sinisin(0 + w),

_ 1
a(1-e?)’

1-e?
1-ecosE

(1+ecosB) =

To avoid the error in the position of the satellite, the value of V* at 8 = 0° is subtracted from the value of V* obtained. Similarly, to
avoid the error in the position of the satellite, the value of w*, at 8 = 0° is subtracted from the value of w*. Therefore, the equation

L?R?

Ve=—

r

[sin2 isinfw — (5)2] . (21)

Substituting the value of V*, we get
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13 s[q_3RLRE 2isin? e — (2) )]
S =L*(1+ecos0) _1 PRy (1 ecosE){sm isin?w (r) | (22)
ER! a4 _2RR% o m2isin? o — (2]
< =L*1+ecos®) _1 D) (1 ecosE){sm isin?w (r) , (23)
1_ys s[4 _ 5LI%RE . s (2\A]
==L (1 +ecos0) _1 209 1 ecosE){sm isin®w (r) | (24)

Substituting equations (22), (23) and (24) in Jz expression in equation (15), we get

K?%],R?
Aai _ KD

- 8\/u—0a3

00 10 01 00 10 20 30 01 11 21
3J,R? A(qo 42" +q1,42"+42,427)  (fo;Aa +f1, 45"+ 2, A8 +f3,A57 + fa, Ag" +f5,A5" +fe,A57)
quAg() + qliA%O + quAgl 2 { i i i _ Yo% i i i i i i +

- 2(1-e2)3a? 1 a2

3 2J,R?
;{{gok/lgo + 91,45 + 92, 45° + 93, A" + 94,(/141;1} + U—;W ( A{gok/lgo + 91,45 + 92, 45° + 93, 13" + 94,/1:%;1} -

00 10 20 30 40 01 11 21 31
(AL +hy ALO+hy AZ0+hy A0+, AR +hs AL +hg AV +hy A2 +hg A3

a?

6
>} - ;{{fO[AgO + fliAéo + fZiAEO + fSiAgo + ﬁl—iAgl + fSiAél + fﬁiAél} +

00 10 20 30 40 50
Mo, Ag” +My Ag"+My A7 +my Ag"+my A" +ms, Ag )

2(1—e?)3a? a?

2
SR (A {fo, 480 + 1,430 + Fo, %0 + f3 430 + fo, At + fs AL + fo 431} — (

(25)

7

0 2 3
(msi/lél+m7l./1é1+m8i/161+m9iA61+mml.Agl)>}
3a?

where

s cosPE sinSE
NS = [
q (1-ecosE)4

1 inE

A= [w—“ +@n=3) A= (n—2) A%, n>1
16 sin?i

A=2-——

01_ _

An = (n—1)eAn1
11_1 1 01

AL —;(/\% - At))n>2

21 1 01 01 01
Ng _e_z[/\S — 273+ A3Y]

1 m _
ARO= —— ano(k) D™ * A2,

(=e)m™
1 1.5 ) 1 0.25
/\31_ 1-ecosE (l—ecosE)zT(l—ecasE)3 (1—-e cos E)*
5 et
02 o5 1
/\21_ (1—ecosE)S  (1—ecosE)* 3(1-ecosE)3
6 — e3
-02 | 3 1 ) 0.5
/\31_ (1—ecosE)5 ' 4(1—ecosE)* (1-ecosE)3  (1—ecosE)?
6 — ot
cosSE
Al= —=—==—ecos®E —3e?cos” E — 7e3 cos®E
with

L=——
a(1-e?)

1-e?
1-ecosE

(1—ecosB) =



8 International Journal of Advanced Astronomy

ho, = b3gs, + bogo,

hy, = b3ga, + bags, + bogs, + b1go,

hz, = baga, — b3gs, + bogz, + b191, + b290,

hz, = —b3ga, — bags, + b192, + b291,

h4k = bzgzk - b494k

hs, = bogs, + b3go,

he, = boga, + b1g3, + b3g1, + bago,

h;, = b1ga, + bygs, + b3ga, + bagn,

hg, = b2ga, + bsgz,

mg, = bofo, + b3fa,

my, = bifo, + bsfs, + bafs, + bofy,

My, = byfo, + bsfe, + bafs, — bsfa, + bafo, + b1 fy,
Mg, = byfs, — bsfs, — bafa, + bofs, + bifz, + bafy,
My, = —bsfs, — bafs, +bufs +byfy,

ms.

. = bofs, — bufe,

mg, = bsfy, — bofy,

my, = byfo, + bofs, + byfy, + bsfy,

mg, = bofg, + byfs; + bofy, + bsfy, +bafy,
mg, = byfg, + byfs, + bafs, + byfy,

myg, = byfy; + bafs,
5. Numerical results

For computing the results with Jz, three test cases at an inclination of 85° for eccentricities 0.01, 0.1 and 0.2, having perigee height of
200 km are chosen to show the effectiveness of the present theory. The other initial conditions for the orbit are given as right ascension
of ascending node () = 60° and argument of perigee (®) = 0°. The results were generated to validate the improvement obtained with the
addition of King Hele’s [10] expression with J2. The difference between the numerically integrated and analytically computed values
with the modified theory (ANALZ1) and existing theory (ANALZ2) by Sharon et al. [17] during half a revolution with a single analytical
step size are given in Table 1. It may be noted that the modified theory provides more accurate values of the important orbital parameter
‘semi-major axis’ during half a revolution than Sharon et al. theory [17].

Table 1: Variation in Semi-Major Axis during Half a Revolution with J,

Parameter Case Method LA 87 i1 = (@)

30 60 90 150 165 180

A NUM-ANAL1 -0.03 -2.58 -19.1 -2.35 20.3 422

NUM-ANAL2 -0.05 -3.6 -20.1 -3.8 21.9 43.8

a(m) B NUM-ANAL1 -0.4 -7 -22.8 9.27 26.4 39.6
NUM-ANAL2 -0.6 -8.6 -23.7 10.2 2715 40.5

c NUM-ANAL1 -0.9 -13.08 -20.4 19.5 31.3 38.8

NUM-ANAL2 -1.2 -14 -214 224 33.4 40.9

To generate the results with Js and J4, three test cases A, B and C having eccentricities of 0.03791, 0.17524 and 0.53964 with inclination
of 30° are chosen to show the effectiveness of the present theory for very small to very high eccentricity orbits. Details of the initial state
vector x, X along with the resulting orbital elements are provided in Table 2. As may be seen from Tables 3 and 4, the error is found to be
less than 0.55 % with Jz and less than 0.85% with J4 during half a revolution in all the numerical simulations carried out.
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Table 2: Initial Conditions (Position, Velocity and Osculating Orbital Elements)

. Case
Variables A B c
Xy (km) 0 0 0
Xo(km) -5888.97 -5888.97 -5888.97
Xa(km) -3400 -3400 -3400
%, (km s?) 7.8 8.3 95
%,(km s?) 0 0 0
X3 (km s) 0 0 0
a (km) 7067.95 8244.833 14770.91
e 0.0379 0.1752 0.5396
i (deg) 30 30 30
Q(deg) 0 0 0
o(deg) 270 270 270
M(deg) 0 0 0
Table 3: Variation in Semi-Major Axis (Metres) During Half a Revolution with J;
Parameter Case Method AR SEpS(e)
10 30 60 90 120 150 180
NUM 5.375 -72.483 -433.56 -1420.3 -2200.88 -2380.3 -2338.8
A NUM-ANAL 0.0009 0.2209 -2.3419 -5.653 -8.5128 10.6554 7.399
% ERROR 0.016 -0.304 0.54 0.39 0.386 -0.447 -0.316
NUM -8.458 -177.531 -1124.1 -2081.9 -2372.83 -2322.7 -2275.8
a(m) B NUM-ANAL -0.0013 0.1109 -1.1123 -2.8921 1.5878 3.4844 25173
% ERROR 0.015 -0.062 0.099 0.139 -0.067 -0.15 -0.1106
NUM -309.27 -2968.05 -5959.5 -6087.8 -5975.98 -5931 -5920.3
C NUM-ANAL -0.0198 -6.363 -15.577 -5.5506 -2.9294 -2.3412 -3.7742
% ERROR 0.006 0.214 0.261 0.091 0.049 0.039 0.064
Table 4: Variation in Semi-Major Axis (Metres) During Half a Revolution with J,
Parameter Case Method AL SEES(EED)
10 30 60 90 120 150 180
NUM 23.627 221.057 782.392 1031.82 674.507 277.971 157.485
A NUM-ANAL -0.0003 -0.2299 -1.486 2.597 3.8459 2.3254 1.317
% ERROR -0.001 -0.104 -0.189 0.251 0.57 0.836 0.837
NUM 50.1117 420.851 1049.42 990.416 711.421 587.036 563.68
a(m) B NUM-ANAL -0.0049 -0.4986 -1.1123 1.8921 1.9985 1.5602 1.4974
% ERROR -0.009 -0.001 -0.106 0.191 0.281 0.266 0.266
NUM 460.139 2401.4 2457.91 2196.87 2171.15 2171.47 217211
Cc NUM-ANAL -0.092 -3.358 0.4164 0.5717 0.3529 0.2825 0.3141
% ERROR -0.019 0.139 0.016 0.026 0.016 0.013 0.014

6. Conclusion

K-S uniformly regular canonical equations of motion with generalized eccentric anomaly provide a very efficient and accurate analytical
integration method for short-term orbit computation with Earth’s oblateness for short-term motion. Only one of the eight equations need
to be integrated analytically to generate the state vectors, because of symmetry in the equations of motion. Numerical results indicate that
the solution is quite accurate for a wide range of eccentricity. The solution obtained using King-Hele’s expression for radial distance as
function of Jz is an improvement over the existing theory of Sharon et al. [17] which uses KS regular elements. The percentage error is
found to be less than 0.55% for Jzand less than 0.85% for Js. The solutions can have number of applications. It can be used for studying
the short-term relative motion of two or more space objects and in collision avoidance studies of space objects. It can be also useful for
onboard computation in the navigation and guidance packages and generation of mean orbital elements.
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