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Abstract 
 

Two minimally interacting fluids; dark matter and holographic dark energy components has been studied in a spatially homogeneous and 

anisotropic Bianchi type-I space-time. The solutions of the Einstein’s field equations are obtained under the assumption of time varying 

deceleration parameter (Abdussattar and S. Prajapati, Astrophys. Space Sci. 331, 65, 2011) which represents transition of the universe 

from the early decelerating phase to the recent accelerating phase. It is shown that for large expansion the model reduces to CDM mod-

el while for suitable choice of interaction between dark matter and holographic dark energy the anisotropy parameter of the universe 

approaches to zero for large cosmic time and the coincidence parameter increases with increase in time. Allowing for time dependent 

deceleration parameter the solutions of the field equations and some physical and geometric properties of the model along with physical 

acceptability of the solutions have also been discussed in details. 
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1. Introduction 

The recent cosmological observations of Type Ia supernovae [1-2] 

indicate that the universe is currently accelerating. These results, 

when combined with the observations of Cosmic Microwave 

Background [3, 4] and Large Scale Structure [5-6], strongly sug-

gest that the universe is spatially flat and dominated by an exotic 

component with large negative pressure called as dark energy [7-

10]. Since it has been proven that the expansion of the universe is 

accelerated, the physicists and astronomers started considering the 

dark energy cosmological observations indicated that at about 2 3  

of the total energy of the universe is attributed by dark energy and 

1 3  is due to dark matter [11].There are many candidates for dark 

energy. Among the many different approaches to describe the dark 

cosmological sector, so called holographic dark energy models 

have received considerable attention [12-15]. 

The holographic principle emerged in the context of black-holes, 

where it was noted that a local quantum field theory cannot fully 

describe the black holes [16]. Some long standing debates regard-

ing the time evolution of a system, where a black hole forms and 

then evaporates, played the key role in the development of the 

holographic principle [17-19]. Cosmological versions of holo-

graphic principle have been discussed in various literatures [20-

22]. Easther et al. [22] proposed that the holographic principle be 

replaced by the generalized second law of thermodynamics when 

applied to time-dependent backgrounds and found that the propo-

sition agreed with the cosmological holographic principle pro-

posed by Fischler and Susskind [20] for an isotropic open and flat 

universe with a fixed equation of state. Numerous cosmological 

observations have established the accelerated expansion of the 

universe [22], [23]. In recent times, considerable interest has been 

stimulated in explaining the observed dark energy by the holo-

graphic dark energy model.  

In order to obtain exact solutions of the Einstein’s field equations, 

many authors assume various physical or mathematical conditions. 

Many authors use condition on deceleration parameter. Among 

this, constant deceleration parameter which was proposed by 

Berman (1983), linearly varying deceleration parameter proposed 

by Akarsu and Dereli (2012) and a special form of deceleration 

parameter proposed by Singha and Debnath (2009) are mostly 

used by many authors. 

Holographic dark energy models have been tested and constrained 

by various astronomical observations.A special class is models in 

which holographic dark energy is allowed to interact with dark 

matter [26-48]. Recently, Sarkar [49] have studied non-interacting 

holographic dark energy with linearly varying deceleration param-

eter in Bianchi type-I, Adhav et al. [50] presented interacting hol-

ographic dark energy with constant and special form of decelera-

tion parameter. Raut et al. [51] also extended the study of interact-

ing holographic dark energy with Hybrid Expansion Law.  

Motivated from the study outlined above, in this paper two mini-

mally interacting fluids i.e. dark matter and holographic dark en-

ergy components has been studied in a spatially homogeneous and 

anisotropic Bianchi type-I space-time. The solutions of the Ein-

stein’s field equations are obtained under the assumption of time 

varying deceleration parameter proposed by [53] which represent-

ing transition of the universe from the early decelerating phase to 

the recent accelerating phase. Allowing for time dependent decel-

eration parameter the solutions of the field equations, physical 

acceptability of some physical and geometric properties of the 

model have also been discussed in details. 

2. Metric and basic equations 

The anisotropy plays a significant role in the early stage of evolu-

tion of the universe and hence the study of anisotropic and homo-

geneous cosmological models becomes important. The Bianchi 
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type universe models are spatially homogeneous cosmological 

models that are in general anisotropic. The Bianchi type-I space-

time is the straight forward generalization of Robertson-Walkar 

(RW) metric which is one of the simplest models of the aniso-

tropic universe. Therefore I confine myself to Bianchi type-I mod-

el of the form 

 
2 2 2 2 2 2 2 2

1 2 3
ds dt a dx a dy a dz= − − − ,   (1) 

 

where 
1

a ,
2

a and 
3

a are the directional scale factors and are the 

function of cosmic time t  only.  

In case of a radial symmetry between the metric potentials,     

universe (1) is equal to RW universe. 

Some parameters for the LRS Bianchi type-I universe which are 

important in cosmological observations are given as fallows. 

The average scale factor a and spatial volume scale factor V re-

spectively are defined as  

 
1

3

1 2 3
( )a a a a= ,and 3

1 2 3
V a a a a= =    (2) 

 

The anisotropy parameter of the expansion is expressed as 
2

3

1

1

3

i

m
i

H
A

H=

 
=  

 
,     (3) 

 

where 

31 2
1 1

3 3

aa aV a
H

V a a a a

 
= = = + + 

 
,            (4) 

be the mean Hubble parameter and ( )1,  2,  3
i

H i =  represent the 

directional Hubble parameters in the directions of x , y and z ax-

es respectively.  

The kinematical parameters which are observational interest in 

cosmology to define the behavior of the universe are the expan-

sion scalar , the shear scalar 2  and the deceleration parameter 

q  which are respectively given as 

 

31 2
aa a

a a a


 
= + + 
 

,     (5) 

2

2 2 2 2

1 2 3

1

2 6
H H H


 = + + −   ,    (6) 

2

1
1

a a d
q

a dt H

 
= − = − 

 
.    (7) 

3. Field equations and their quadrature forms 

Einstein’s field equation is given by 

( )
1

2
ij ij ij ij

R g R T T− = − + ,     (8) 

where 
ij

R is the Ricci tensor, R is the Ricci scalar and 

8 1 and 1G c = =  for relativistic units. The energy momentum 

tensor for matter and the holographic dark energy are respectively 

defined as 

 

ij m i j
T u u= and ( )ij i j ij

T p u u g p
  

= + + ,   (9) 

 

where ,
m

 


are the energy densities of matter and the            

holographic dark energy and p


is the pressure of the holographic 

dark energy. 

In a co-moving coordinate system, Einstein’s field equation (8) 

with (9) for the considered model (1) leads to following system of 

field equations. 

 

2 3 1 31 2

1 2 2 3 1 3

m

a a a aa a

a a a a a a
 


+ + = + ,    (10) 

1 2 1 2

1 2 1 2

a a a a
p

a a a a


+ + = − ,     (11) 

3 2 32

2 3 2 3

a a aa
p

a a a a


+ + = − ,     (12) 

3 1 31

1 3 1 3

a a aa
p

a a a a


+ + = − .     (13) 

 

Here, overhead dot (.) denotes derivative with respect to time t . 

Subtracting equation (13) from the equation (12), one may get 

 

31 2 1 2 1 2

1 2 1 2 1 2 3

0
aa a a a a ad

dt a a a a a a a

    
− + − + + =    

    
.  (14) 

 

Now, equation (2) and (14) gives 

0
2

2

1

1

2

2

1

1 =







−+








−

V

V

a

a

a

a

a

a

a

a

dt

d  ,   (15) 

 

which on integrating yield 

 

1

1 1

2

exp
a dt

a V
 

 
=  

 
 .     (16) 

 

Similarly Subtracting equation (12) from equation (11) and (11) 

from (13) yields 

 

1

2 2

3

exp
a dt

a V
 

 
=  

 
,     (17) 

 

2

3 3

3

exp
a dt

a V
 

 
=  

 
,     (18) 

where
1 2 3 1 2 3
, , , , and       are the integration constants. 

In view of 
1 2 3

V aa a= , following relation between the constants 

1 2 3 1 2 3
, , , , and       are obtained as

2 1 3
 = ,

2 1 3
  = +  . 

 

Using equations (16) to (18), the values of scale factors
1

a , 
2

a and 

3
a can be written explicitly as 

( )3

1 1 1
expa d a X a dt−=  ,    (19) 

 

( )3

2 2 2
expa d a X a dt−=  ,    (20) 

 

( )3

3 3 3
expa d a X a dt−=  ,    (21) 

 

where the relations
1 2 3

1d d d =  and 
1 2 3

0X X X+ + =  are satisfied by 

the constants ( )1,2,3
i

d i =  and ( )1,2,3
i

X i =  respectively.  

Using equations (10) to (13) and the barotropic equation of state

p 
 
= , the continuity equation can be obtained as 

 

3 31 2 1 2

1 2 3 1 2 3

(1 ) 0
m m

a aa a a a

a a a a a a
    

 

   
+ + + + + + + + =   
   

 . (22) 

For minimally interaction between the matter and dark energy, the 

continuity equation of matter and holographic dark energy can be 

obtained as 

 

31 2

1 2 3

0
m m

aa a

a a a
 

 
+ + + = 
 

 ,    (23) 

 

31 2

1 2 3

(1 )
aa a

a a a
  

 

 
+ + + + 
 

.    (24) 
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4. Cosmological solutions 

For 2 8 1
p

M G− = = [61], the holographic dark energy density is 

given by 

 
23( )H H  


= + ,     (25) 

 

where  and  are constants and H is the mean Hubble         

parameter. 

Using equation (24) in (23) yield 

 

2

2
1

3 ( )

HH H

H H H

 


 

+
= − −

+
.    (26) 

 

According to the work of Akarsu and Dereli [52], the deceleration 

parameter which is linear in time with a negative slope is consid-

ered as  

2

1
1

aa d
q

a dt H

 
= − = − 

 
 .     (27) 

As time dependence of the scale factor reflects main events in 

history of the Universe. Moreover it is the deceleration parameter 

who dictates the expansion rate of the Hubble sphere and deter-

mines the dynamics of the observable galaxy number variation: 

depending on the sign of the deceleration parameter this number 

either grows (in the case of decelerated expansion), or we are go-

ing to stay absolutely alone in the cosmos (if the expansion is 

accelerated). 

One can classify models of Universe on the basis of time         

dependence of the two parameters. All models can be              

characterized by whether they expand or contract, and accelerate 

or decelerate: 

a) 0, 0H q  : expanding and decelerating 

b) 0, 0H q  : expanding and accelerating 

c) 0, 0H q  : contracting and decelerating 

d) 0, 0H q  : contracting and accelerating 

e) 0, 0H q = : expanding, zero deceleration 

f) 0, 0H q = : contracting, zero deceleration 

g) 0, 0H q= = : static 

 

Integrating equation (27) gives the average scale factor as 

exp
[ (1 ) ]

dt
a

q dt 
= 

+ +
 .    (28) 

 

Where,  be the arbitrary constant. It is an easy choice that pro-

vides a  as an explicit function of time for constant value of decel-

eration parameter. But, when q  is taken to vary with time, an 

explicit determination of a  leads to a possible choice of q  as 

Abdussattar and Prajapati [53] 

2
( 1)

m
q n

t
= − + − .     (29) 

Here 0m  is a parameter having the dimension of square of time 

and 1n   is dimensionless constant. Obviously, the different val-

ues of m and n will give rise to different models. For 1n  the 

model shows decelerating behavior but for 1n  it shows acceler-

ating behavior. Equation (28) can be integrated to give the time 

variation of the scale factor as 

2

1
exp

dt
a

mn
t

n n



 
 
 = 

  
+ +    

.    (30) 

Setting 0 =  and integrating, the average scale factor a  can be 

obtain as 

 
1

2

2

nm
a t

n

 
= + 
 

.     (31) 

 

Using equation (31) into equations (19) to (21), the directional 

scale factors are obtained as 

 
331 2 222 2 1 3 32 2exp 1 , ; ;

1 1 1 2 1 2 2 2

nn nm m nt n t
a d t X t t F

n n m n m

 −
    −   
   = + + +               

 

(32) 

 
331

2 222 2

2 2

2 2 2 2 1

1 3 3
exp 1 , ; ;

2 2 2

nn nm m nt n t
a d t X t t F

n n m n m

−
 −       

= + + +        
         

(33) 

 
331

2 222 2

2 2

3 3 3 2 1

1 3 3
exp 1 , ; ;

2 2 2

nn nm m nt n t
a d t X t t F

n n m n m

−
 −       

= + + +        
         

(34) 

 

Where 
2 1
F is hyper geometric function. 

Here it is observed that all the directional scale factors are the 

product of exponential and power term. At the initial time 0t =  

that is when the universe starts to expand, the entire directional 

scale factors remains constant and approaches to isotropy. Hence, 

initially the model has no singularity. For 2 m
t

n
= − , all the      

directional scale factors reduces to zero thus the derived model has 

a point type singularity at 2 m
t

n
= − . 

5. Behavior of geometrical and physical       

parameters of the model 

The volume of the universe is obtained as 
3

2

2

nm
V t

n

 
= + 
 

,      (35) 

 

It is observed that the spatial volume V  and the directional scale 

factors 
1 2

,a a and 
3

a are remains constant as 0t → . However, the 

volume scale factor expands exponentially as t increases and be-

comes infinitely large at t = which shows the late time accelera-

tion of the universe. 

The expression for the mean Hubble parameter and Anisotropy 

parameter are respectively obtained as 

 
1

2t m
H t

n n

−

 
= + 

 
,      (36) 

 

( ) ( 2 3/ )2 2 2

1 2 3 2

23

n

m

X X X m
A t

t n

−

+ +  
= + 

 
.    (37) 

From the observation the universe starts its expansion from con-

stant volume, the mean Hubble parameter and expansion scalar 

both are initially large and decreases with the expansion. For large 

cosmic time the Hubble parameter, expansion scalar and the mean 

anisotropy parameter all are approaches to zero. Therefore for 

large cosmic time the anisotropy of the universe damp out and the 

universe approaches to an isotropic universe. Although the early 

universe was anisotropy, it approaches to an isotropic universe as 

dark energy starts to dominate the energy density of the universe 

at CDM model. Figure (ii) shows the behavior of anisotropy 

parameter. 

Using equation (35) in equation (26), the dark energy Equation of 

State (EoS) parameter can be obtained as 

 
2 3

2 2 2

2 2

2 3

2 2 2

2 3 2

2 6 8 4

1
3 3 6

m m
t t t

n n n n n n

m m
t t t

n n n n n

   


  

− −

− −

       
− + + − +       

       = − −  
      + + − +            

.  (38) 
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A large class of scalar field dark energy models has been studied 

including quintessence ( 1) − , phantom ( 1) −  and Quinton 

(which can cross from the phantom region to the quintessence 

region). The Quinton scenario of dark energy is designed to un-

derstand the nature o dark energy with  cross 1− . From figure 

(iii) it is observed that in this derived model the dark energy EoS 

parameter is time dependent. At the initial stage when the universe 

started to expand, the EoS parameter of the universe has the value 
0  i.e. the model behaves like matter dominated once, while 

late time it become 0  . At late time the EoS parameter varies 

from phantom 1  −  region and approaches to 1− , hence at late 

time model becomes a CDM  model. It is interesting to note that 

EoS parameter takes a negative value, which is in good agreement 

within Supernova observations.  

From equation (23) and (25), the matter density 
m

 and the holo-

graphic dark energy density 


are found as 
3

2

2

n

m

m
k t

n


−

 
= + 

 
.     (39) 

 
2 1

2 2 2

2

3
( 2 )

m m
n t t n t

n n n
   

− −



     
= − + + +    

     
.  (40) 

 

The variation of matter energy density 
m
ρ and dark energy density 

Λ
ρ  versus time is given in figure (vii).It is observed that holo-

graphic dark energy density 


is inverse function of cosmic time 

and initially at 0t →  it starts from some constant value while for 

infinite expansion of the universe it converges to zero which 

shows that the model is asymptotically empty and the model is 

filled with dust matter.  

The matter density parameter 
m

 and the holographic dark energy 

parameter 


 are respectively given by 

 
( )322 2

2

2 23 3

n

m

m

n k m
t

H t n


−

 
 = = + 

 
 

 

And 

 

2 2
( 2 ) 1

3

m
n n

H n t


  



 
 = = − + + 

 
.   (41) 

 

With the help of equation (4.11), (4.14) and (4.15), the overall 

density parameter is found as 
3

(2 )2 2
2

2 2
( 2 ) 1

3

n

m

n k m m
t n n

t n nt
  

−



   
 =  + = + + − + +   

   
. (42) 

 

It is observed that the energy density is always positive and de-

creasing function of time t . At the initial stage 0t →  the universe 

has infinitely large total energy density i.e. the universe start with 

Big Bang and with the expansion of the universe, the total energy 

density tends to a finite value( 1 ). Hence, after some finite time, 

the models approach to a steady state which is clearly shown in 

figure (iv).  

 

Coincidence parameter: 
The recent observations demands that the ratio of two energy den-

sities i.e. the coincidence parameter 
m

r



=
 stays constant or varies 

very slowly, around the present time, with respect to the universe 

expansion. But, the leading candidate for dark energy, the popular
CDM model is not consistent with this observation. This coinci-

dence problem has led numerous authors to consider alternatives 

to CDM  which preserve its stunning successes (Type IaSNe, 

CMB anisotropies, large-scale structure) but avoid the above diffi-

culty. To avoid the coincidence problem, matter and dark energy 

must scale each other over a considerably long period of time 

during the later stage of evolution of the universe. In other words, 

the ratio of two energy densities 
m

r



=

 remains constant in spite of 

their different rates of time evolution.  

For this model the coincidence parameter r is obtained as 

 
3 3

( 2) ( 1)
2 2

2 2 2

2

3
( 2 )

n nm m
r n t t n t

kn n n
  

− − 
    

= − + + +    
     

. (43) 

 

The variation of coincidence parameter r  with respect to cosmic 

time t  is as shown in Figure (v). Observational data shows that 

present value of the coincidence parameter r  and the cosmic time 

0
t are 2.33 and13.798 gaga years [55]. It is observed that          co-

incidence parameter r at very early stage of evolution varies, but 

after some finite time it converges to a constant value and remains 

constant throughout the evolution of the universe. It is seen from 

this figure that our result is consistent with the current observa-

tional data and also resembles with the work of [55]. 

 

The jerk parameter: 
Observations confirm that in the early years of the universe, the 

dark energy would have been too small to counteract the gravity 

of the matter in the universe, and the expansion would have    

initially slowed. After the universe grew big enough, though, the 

dark energy would dominate, and the universe would start to   

accelerate from some five to six billion years ago [54].           

Cosmologists believe that the universe transitioned from          

deceleration to acceleration in a cosmic jerk. The knowledge of 

how and when the jerk occurred was an important step in figuring 

out just what the dark energy is. The deceleration to acceleration 

transition of the universe occurs for different models with a    

positive value of the jerk parameter and negative value of the  

deceleration parameter [56-60]. For example flat CDM models 

have a constant jerk 1j = . Cosmic jerk parameter is a dimension-

less third derivative of the scale factor with respect to the cosmic 

time, defined as  

 

3

1
( )

a
j t

H a
= .     (44) 

 

Above equation can be express in terms of Hubble and decelera-

tion parameter as 

2( ) 2
q

j t q q
H

= + − .                                  (45) 

For this model the jerk parameter is obtain as 

2

2

3
( ) 2 3 1 (1 2 )

m
j t n n n

t
= + + + −  .   (46) 

Figure (vi) shows that the jerk parameter is positive throughout the 

entire history of the universe and for large cosmic time, the jerk 

parameter is approaches to some constant positive value.  

 

 
Fig. 1: Variation of Deceleration Parameter versus Time for Appropriate 
Values of Constants. 
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Fig. 2: Anisotropy Parameter versus Time for Appropriate Values of Con-

stants. 

 

 
Fig. 3: Dark Energy Eos Parameter versus Time for Appropriate Values of 

Constants. 

 

 
Fig. 4: Total Energy Density versus Time for Appropriate Values of Con-

stants. 

 

 
Fig. 5: Coincidence Parameter versus Time for Appropriate Values of 

Constants. 

 

 
Fig. 6: Jerk Parameter versus Time for Appropriate Values of Constants. 

 

 
Fig. 7: Matter Energy Density 

m
 & Dark Energy Density 


 versus 

Time for Appropriate Values of Constants. 

6. Conclusions 

The present work deals with two minimally interacting fluids dark 

matter and holographic dark energy components in a spatially 

homogeneous and anisotropic Bianchi type-I space-time under the 

assumption of time varying deceleration parameter. It is observed 

that the model represent transition from the early decelerating 

phase to the recent accelerating phase. Also from the expression of 

holographic dark energy density parameter it is observed that the 

model is asymptotically empty thus the model is filled with dust 

matter. The anisotropy parameter has been found to be dynamical 

and decreases as the universe expands. It is found that the universe 

approaches to isotropy for large cosmic time as suggested by  

different observational data. Thus we can say that the Bianchi 

type-I space-time reduces to flat RW soon after inflation. Also the    

derived model is accelerating, expanding and has no initial       

singularity and has a point type singularity at 2 m
t

n
= − . 

In this derived model, the inflation of universe is depend on the 

value of n . For 1n  , the mode of universe is accelerating which 

is consistent with the recent CMB and WMAP observations    

whereas for 1n   it is decelerating which is also consistent with 

the high red-shift supernovae-Ia data [1-5] while for 1n =  the 

mode of universe is constant exponent (de-Sitter expansion) which 

is   depicted in figure (i). 

The coincidence parameter of this derived model increases with 

increase in time whereas the jerk parameter at very early stage of 

evolution varies but after some finite time it converges to a     

constant value and remains constant throughout the entire        

evolution. 

The Lorentz Invariant Vacuum Energy (LIVE), which can be rep-

resented by a cosmological constant ( ) , with a constant Eos pa-

rameter 1 = − , the so-called CDM model, which in a flat uni-

verse model contains both LIVE and cold dark matter CDM , i.e. 

dust. It is observed that the EoS parameter is function of time. 

From the obtained value of EoS parameter for large expansion it is 
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observed that the model reduces to CDM model which is also 

shown from the value of total energy density parameter. Some 

other limits of   obtained from observational results that came 

from SNeIa data [62] and combination of SNeIa data with CMB 

anisotropy and Galaxy clustering statistics [5-6] are 

1.67 0.62 and 1.33 0.79 −   − −   − respectively. The latest 

result obtained after a combination of cosmological data sets   

coming from CMB anisotropy, luminosity high red-shift SNeIa 

and galaxy clustering constrain the dark energy EoS parameter to
1.44 0.92−   −  [63]. If the present model is compared with 

above experimental results one can conclude that the limit of 

provided by equation (38) may be accumulated with the          

acceptable range of EoS parameter. This model confirms the high 

red-shift supernova experiment.  
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