A Hilbert-type integral inequality with its best extension

Authors

  • Wu Weiliang

    teacher in School of Mathematics Jiaying University,Guangdong Meizhou 514031, China
  • Lian Donglan

    student of university

How to Cite

Weiliang, W., & Donglan, L. (2015). A Hilbert-type integral inequality with its best extension. Global Journal of Mathematical Analysis, 3(3), 121-125. https://doi.org/10.14419/gjma.v3i3.4885

Received date: June 4, 2015

Accepted date: June 29, 2015

Published date: July 4, 2015

DOI:

https://doi.org/10.14419/gjma.v3i3.4885

Keywords:

Weight Function, Hilbert-Type Integral Inequality, Best Extension, Reverse

Abstract

By using the way of weight function and the technique of real analysis, a new  Hilbert-type integral inequality with a  kernel as \(min\{x^{\lambda_1},y^{\lambda_2}\}\) and its equivalent form are established. As application, the constant factor on the plane are the best value and its best extension form with some parameters and the reverse forms are also considered.

References

  1. [1] Hardy G H. Note on a Theorem of H ilbert Concern ing Series of Positive Terms. Proc London Math Soc,1925,23 (2):XLV-XLVL.

    [2] Hardy GH,Littewood J E, Polya G.I nequalities[M]. Cambridge:Cambridge University Press,1952.

    [3] Mitrinovic D S, Pecaric J, Fink A M. Inequalities Involving Functions and Their Integrals and Derivatives. Boston: Kluwer Academic Publishers, 1991.

    [4] Bicheng Yang. A new Hilbert's type integral inequality. Journal Mathematics,2007,33(4):849-859.

    [5] Bicheng Yang.On the norm of an integral operator and applications[J].J Math And Appl,2006,321:182-192.

    [6] Weiliang Wu. A new Hilbert-type integral inequality with some parameters and its applications[J].J of Xibei Normal University: Natual Science,2012,48 (6):26-30.

    [7] Bicheng Yang. On a Hilbert-type integral inequality with the homogeneous kernel of degree. Shanghai University(EnglEd):Natual Science,2010,14(6):391-395.

    [8] Jichang Kuang, Applied Inequalities, Shangdong Science Press,Jinan,2004.

    [9] Jichang Kuang, Introduction to real analysis, Hunan Education Press,Changsha,1996.

Downloads

Additional Files

How to Cite

Weiliang, W., & Donglan, L. (2015). A Hilbert-type integral inequality with its best extension. Global Journal of Mathematical Analysis, 3(3), 121-125. https://doi.org/10.14419/gjma.v3i3.4885

Received date: June 4, 2015

Accepted date: June 29, 2015

Published date: July 4, 2015