Complete monotonicity of a function involving the p-psi function and alternative proofs

Authors

  • Valmir Krasniqi

    Department of Mathematics, University of Prishtina, Prishtine 10000, Republic of Kosova
  • Feng Qi

    Department of Mathematics, College of Science, Tianjin Polytechnic University Tianjin City, 300160, China

How to Cite

Krasniqi, V., & Qi, F. (2014). Complete monotonicity of a function involving the p-psi function and alternative proofs. Global Journal of Mathematical Analysis, 2(3), 204-208. https://doi.org/10.14419/gjma.v2i3.3096

Received date: June 30, 2014

Accepted date: July 26, 2014

Published date: August 3, 2014

DOI:

https://doi.org/10.14419/gjma.v2i3.3096

Abstract

In the paper, the authors prove that the function $x^\alpha\big[\ln\frac{px}{x+p+1}-\psi_p(x)\big]$ is completely monotonic on $(0,\infty)$ if and only if $\alpha \le 1$, where $p\in\mathbb{N}$ and $\psi_p(x)$ is the $p$-analogue of the classical psi function $\psi(x)$.

Keywords: completely monotonic function; necessary and sufficient condition; p-gamma function; p-psi function; Inequality

MSC: Primary 33D05; Secondary 26A48, 33B15, 33E50

 

Author Biography

  • Feng Qi, Department of Mathematics, College of Science, Tianjin Polytechnic University Tianjin City, 300160, China

References

  1. M. Abramowitz and I. A. Stegun (Eds), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 9th printing, Washington, 1970.
  2. H. Alzer, On some inequalities for the gamma and psi functions, Math. Comp. 66 (1997), no. 217, 373--389; Available online at http://dx.doi.org/10.1090/S0025-5718-97-00807-7.
  3. T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976.
  4. B.-N. Guo and F. Qi, Two new proofs of the complete monotonicity of a function involving the psi function, Bull. Korean Math. Soc. 47 (2010), no. 1, 103--111; Available online at http://dx.doi.org/10.4134/bkms.2010.47.1.103.
  5. B.-N. Guo, A.-Q. Liu, and F. Qi, Monotonicity and logarithmic convexity of three functions involving exponential function, J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 15 (2008), no. 4, 387--392.
  6. B.-N. Guo and F. Qi, A simple proof of logarithmic convexity of extended mean values, Numer. Algorithms 52 (2009), no. 1, 89--92; Available online at http://dx.doi.org/10.1007/s11075-008-9259-7.
  7. S. Guo and F. Qi, A class of completely monotonic functions related to the remainder of Binet's formula with applications, Tamsui Oxf. J. Math. Sci. 25 (2009), no. 1, 9--14.
  8. V. Krasniqi, T. Mansour, and A. Sh. Shabani, Some monotonicity properties and inequalities for and - functions, Math. Commun. 15 (2010), no. 2, 365--376.
  9. V. Krasniqi and F. Qi, Complete monotonicity of a function involving the -psi function and alternative proofs, available online at http://arxiv.org/abs/1105.4928.
  10. V. Krasniqi and A. Sh. Shabani, Convexity properties and inequalities for a generalized gamma function, Appl. Math. E-Notes 10 (2010), 27--35.
  11. A.-Q. Liu, G.-F. Li, B.-N. Guo, and F. Qi, Monotonicity and logarithmic concavity of two functions involving exponential function, Internat. J. Math. Ed. Sci. Tech. 39 (2008), no. 5, 686--691; Available online at http://dx.doi.org/10.1080/00207390801986841.
  12. D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht-Boston-London, 1993.
  13. F. Qi, Bounds for the ratio of two gamma functions, J. Inequal. Appl. 2010 (2010), Article ID 493058, 84 pages; Available online at http://dx.doi.org/10.1155/2010/493058.
  14. F. Qi, P. Cerone, S. S. Dragomir, and H. M. Srivastava, Alternative proofs for monotonic and logarithmically convex properties of one-parameter mean values, Appl. Math. Comput. 208 (2009), no. 1, 129--133; Available online at http://dx.doi.org/10.1016/j.amc.2008.11.023.
  15. F. Qi and B.-N. Guo, Some properties of extended remainder of Binet's first formula for logarithm of gamma function, Math. Slovaca 60 (2010), no. 4, 461--470; Available online at http://dx.doi.org/10.2478/s12175-010-0025-7.
  16. R. L. Schilling, R. Song, and Z. Vondraček, Bernstein Functions, de Gruyter Studies in Mathematics 37, De Gruyter, Berlin, Germany, 2010.
  17. D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1946.
  18. S.-Q. Zhang, B.-N. Guo, and F. Qi, A concise proof for properties of three functions involving the exponential function, Appl. Math. E-Notes 9 (2009), 177--183.

Downloads

Additional Files

How to Cite

Krasniqi, V., & Qi, F. (2014). Complete monotonicity of a function involving the p-psi function and alternative proofs. Global Journal of Mathematical Analysis, 2(3), 204-208. https://doi.org/10.14419/gjma.v2i3.3096

Received date: June 30, 2014

Accepted date: July 26, 2014

Published date: August 3, 2014