Majorization problems for p-valently meromorphic functions of complex order involving certain integral operator

Authors

  • Thambidurai Janani

    School of Advanced Sciences, VIT University, Vellore 632 014 India ,www.vit.ac.in
  • Gangadharan Murugusundaramoorthy

    Dr. G. Murugusundaramoorthy, Ph.D. Senior Professor of Mathematics, School of Advanced Sciences, VIT University, Vellore 632 014 India ,www.vit.ac.in

How to Cite

Janani, T., & Murugusundaramoorthy, G. (2014). Majorization problems for p-valently meromorphic functions of complex order involving certain integral operator. Global Journal of Mathematical Analysis, 2(3), 146-151. https://doi.org/10.14419/gjma.v2i3.2989

Received date: June 3, 2014

Accepted date: July 12, 2014

Published date: July 19, 2014

DOI:

https://doi.org/10.14419/gjma.v2i3.2989

Abstract

The main object of this paper is to investigate the problem of majorization of certain class of meromorphic p-valent functions of complex order involving certain integral operator. Moreover we point out some new or known consequences of our main result.

Keywords: Meromorphic functions, Starlike functions, Convex functions, Majorization problems, Hadamard product (convolution), Integral operator.

References

  1. O. Altintas, O,Ozkan and H. M. Srivastava, Majorization by starlike functions of complex order, Complex Variables Theory Appl. 46 (2001), no. 3, 207-218.
  2. E.Aqlan, J.M.Jahangiri, and S.R.Kulkarni, Certain integral operators applied to meromorphic p-valent functions, J. Nat. Geom., 24 (2003),111-120.
  3. S. P. Goyal and P.Goswami , Majorization for certain classes of meromorphic functions defined by integral operator, Annales. Univ. Marie-Curie-Sklod. Math. Lett. 66 (2012), no. 2, 57-62.
  4. R. J. Libera, Univalent a spiral-like functions, Canadian. J. Math. Soc. 19 (1967), 449-456.
  5. A.Y. Lashin, On certain subclasses of meromorphic functions associated with certain integral operators, Comput. Math Appl. 59 (1) (2010), 524-531.
  6. G.Murugusundaramoorthy and N. Magesh, Differential subordination and superordination of integral operator on meromorphic functions", Math. Sci. Res. J. 13 (2009), no. 3, 68-79
  7. Z.Nahari, Conformal mapping, Mac Gra-Hill Book Company, New York; Toronto and London, 1952.
  8. T. H.Mac Gregor, Majorization by univalent functions, Duke Math. J. 34 (1967), 95-102.
  9. S. S. Miller,and P. T.Mocanu, Differential subordinations, Monographs and Textbooks in Pure and Applied Mathematics, 225, Dekker, New York, 2000.
  10. L, Spacek, Prispevek k teorii funkci prostych,Casopis Pest Math. 63 (1933), 12-19.
  11. H.M. Srivastava, S.Owa, A note on certain class of spiral-like functions, Rend.Sem.Mat.Univ.Padavo., 80 (1988), 17-24.

Downloads

How to Cite

Janani, T., & Murugusundaramoorthy, G. (2014). Majorization problems for p-valently meromorphic functions of complex order involving certain integral operator. Global Journal of Mathematical Analysis, 2(3), 146-151. https://doi.org/10.14419/gjma.v2i3.2989

Received date: June 3, 2014

Accepted date: July 12, 2014

Published date: July 19, 2014