New algorithm method for solving the variational inequality problem in Hilbert space

Authors

  • Zena Hussein Maibed

    Baghdad University

How to Cite

Hussein Maibed, Z. (2019). New algorithm method for solving the variational inequality problem in Hilbert space. Global Journal of Mathematical Analysis, 7(2), 15-18. https://doi.org/10.14419/gjma.v7i2.28900

Received date: April 19, 2019

Accepted date: July 6, 2019

Published date: November 10, 2019

DOI:

https://doi.org/10.14419/gjma.v7i2.28900

Keywords:

Resolven, Mapping, Non-Spreading, Common, FixediPoint, Strong Convergence.

Abstract

Theipurpose of,thisipaper,is toiintroduce,aiconcept of generalizedinon_spreading,and define a new algorithm,for infinite,families of generalizedinon_spreading,and finite families of resolvent,mappings. Also, We study,the existence,solution of variational inequality,to a commonifixedipoint in Hilbertispaces. The main,results in this paper extendiand generalized,of many knowniresults initheiliterature.

 

 

References

  1. [1] K.P.R. Sastry, G.V.R. Babu, Convergence of Ishikawa iterates for a multi-valued mapping with a fixed point, Czechoslovak Math. J. 55 (2005) 817–826. https://doi.org/10.1007/s10587-005-0068-z.

    [2] F.E. Browder, Nonlinear operators and nonlinear equations of evolution in Banach spaces, in: Proc. Symp. Pure Math., vol. 18, Amer. Math. Soc., Providence, RI, 1976.

    [3] W.A. Kirk, A fixed point theorem for mappings which do not increase distance, Amer. Math. Monthly 72 (1965) 1004–1006. https://doi.org/10.2307/2313345.

    [4] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974) 147–150. https://doi.org/10.1090/S0002-9939-1974-0336469-5.

    [5] W.R. Mann Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953) 506–510. https://doi.org/10.1090/S0002-9939-1953-0054846-3.

    [6] J.M. Borwein and J.D. Vanderwerff, Convex Functions, Cambridge University Press, 2010.

    [7] R.S. Burachik and A.N. Iusem, Set-Valued Mappings and Enlargements of Monotone Operators, Springer-Verlag, 2008. 24.

    [8] S. Simons, From Hahn-Banach to Monotonicity, Springer-Verlag, 2008.

    [9] C. Z ˘alinescu , Convex Analysis in General Vector Spaces, world Scientific Publishing, 2002. https://doi.org/10.1142/9789812777096.

    [10] H.K.Xu," a nother control condition in an iterative method for nonexpansive mappings, bull, austral. Math. soc, 65 (2002), 109-113. https://doi.org/10.1017/S0004972700020116.

    [11] H.K.Xu," Iterative Algorithm for nonlinear operators",J. london Math.soc .66(2002) 240-256 https://doi.org/10.1112/S0024610702003332.

    [12] A.Moudafi, "Viscosity approximation method for fixed point problems", Journal of Mathematical Analysis and Applications, 241(2000) 46-55.

    [13] H.K.Xu, "Viscosity approximation methods for non-expansive mapping ", J. Math .Anal.Appl. 298 (2004) 279-291. https://doi.org/10.1016/j.jmaa.2004.04.059.

    [14] S. Kamimura, W. Takahashi, "Approximating solutions of maximal monotone operators in Hilbert spaces", J. Approx. Theory 106 (2000) 226–240. https://doi.org/10.1006/jath.2000.3493.

    [15] Z. H. Mabeed, "Strongly Convergence Theorems of Ishikawa Iteration Process with Errors in Banach Space" Journal of Qadisiyah Computer Science and Mathematics, 3(2011)1-8.

    [16] Z. H. Mabeed, Some Convergence Theorems for The Fixed Point in Banach Spaces, Journal of university of Anbar for pure science, 2) 2013(7.2.

    [17] Z. H. Maibed, Strong Convergence of Iteration Processes for Infinite Family of General Extended Mappings, IOP Conf. Series: Journal of Physics: Conf. Series 1003 (2018) 012042. https://doi.org/10.1088/1742-6596/1003/1/012042.

    [18] Zeidler ,"Nonlinear Functional Analysis and Application" New York, (1986). https://doi.org/10.1007/978-1-4612-4838-5.

    [19] H.H. Bauschke and P.L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert Spaces, Springer-Verlag, 2011. https://doi.org/10.1007/978-1-4419-9467-7.

    [20] B.E. Rhoades, Comments on two fixed point iteration methods, J. Math. Anal. Appl. 56 (1976) 741–750. https://doi.org/10.1016/0022-247X(76)90038-X.

    [21] W.G. Dotson Jr., On the Mann iterative process, Trans. Amer. Math. Soc. 149 (1970)65–73. https://doi.org/10.1090/S0002-9947-1970-0257828-6.

    [22] R.L. Franks, R.P. Marzec, A theorem on mean value iterations, Proc. Amer. Math. Soc. 30 (1971) 324–326. https://doi.org/10.1090/S0002-9939-1971-0280656-9.

    [23] C.W. Groetsch, A note on segmenting Mann iterates, J. Math. Anal. Appl. 40 (1972) 369–372. https://doi.org/10.1016/0022-247X(72)90056-X.

    [24] S. Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc. 59 (1976) 65–71. https://doi.org/10.1090/S0002-9939-1976-0412909-X.

    [25] A.K. Kalinde, B.E. Rhoades, Fixed point Ishikawa iterations, J. Math. Anal. Appl. 170 (1992) 600–606. https://doi.org/10.1016/0022-247X(92)90040-K.

    [26] K.K. Tan, H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993) 301–308. https://doi.org/10.1006/jmaa.1993.1309.

    [27] M.K. Ghosh, L. Debnath, Convergence of Ishikawa iterates of quasi-nonexpansive mappings, J. Math. Anal. Appl. 207 (1997) 96–103. https://doi.org/10.1006/jmaa.1997.5268.

    [28] C.E. Chidume, S.A. Mutangadura, An example of the Mann iteration method for Lipschitz pseudocontractions, Proc. Amer. Math. Soc. 129 (2001) 2359–2363. https://doi.org/10.1090/S0002-9939-01-06009-9.

    [29] Z. H. Maibed,generalized tupled common fixed point theorems for weakly compatibile mappings in fuzze metric space,(IJCIET)10(2019)255-273.

Downloads

How to Cite

Hussein Maibed, Z. (2019). New algorithm method for solving the variational inequality problem in Hilbert space. Global Journal of Mathematical Analysis, 7(2), 15-18. https://doi.org/10.14419/gjma.v7i2.28900

Received date: April 19, 2019

Accepted date: July 6, 2019

Published date: November 10, 2019