A new Alzer type Inequality Related to Binomial Function

Authors

  • Xiangkai Dou

    Binzhou University
  • Li Yin

    Binzhou University

How to Cite

Dou, X., & Yin, L. (2019). A new Alzer type Inequality Related to Binomial Function. Global Journal of Mathematical Analysis, 7(1), 1-3. https://doi.org/10.14419/gjma.v7i1.23665

Received date: December 11, 2018

Accepted date: April 18, 2019

Published date: May 6, 2019

DOI:

https://doi.org/10.14419/gjma.v7i1.23665

Keywords:

Binomial Function, Alzer Type Inequality, Monotonicity

Abstract

In this paper, we establish a new Alzer type inequality related to binomial function by using Sitnik methods.

References

  1. [1] H. Alzer, An inequality for the exponential function. Arch. Math., 55(1990),462-464.

    [2] H. Alzer and G. Felder, A Turan-type inequality for the gamma function. J. Math.Anal. Appl., 350(2009), 105-109.

    [3]A Baricz and Ponnusamy, Saminathan and Singh, Sanjeev, Turan type inequalities for general Bessel functions. Mathematics, 19 2015, 709-719.

    [4] K. Dilcher, An inequality for sections of certain power series. Arch. Math., 60(1993),339-349.

    [5] Z. Abo-Hammour, O. Abu Arqub, S. Momani, N. Shawagfeh, Optimization Solution of Troesch’s and Bratu’s Problems of Ordinary Type Using Novel Continuous Genetic Algorithm. Discrete Dynamics in Nature and Society, vol. 2014, Article ID 401696, 15 pages, 2014. doi.10.1155/2014/401696.

    [6] M. Mehrez, Turan type inequalities for the q-exponential functions. Arabian Journal of Mathematics, 6(4), (2017), 309-314.

    [7] M. Mehrez and S. M. Sitnik, Proofs of some conjectures on monotonicity of ratios of Kummer, Gauss and generalized hypergeometric functions. (2014) Available online at http://arxiv.org/abs/1410.6120.

    [8] P. K. Menon, Some integral inequalities. Math. Student, 11 (1943),36-38.

    [9] S. M. Sitnik, Conjectures on monotonicity of ratios of Kummer and Gauss hypergeometric functions. Available online at http://arxiv.org/abs/1207.0936.

    [10] S. M. Sitnik and K. Mehrez, Proofs of some conjectures on monotonicity of ratios of Kummer, Gauss and generalized hypergeometric functions. Analysis, 36(4) 2016, 263-268.

    [11] N. Shawagfeh, O. Abu Arqub, S. Momani, Analytical solution of nonlinear second-order periodic boundary value problem using reproducing kernel method. Journal of Computational Analysis Applications, 16 (2014), 750-762.

    [12] M. Al-Smadi, O. Abu Arqub, N. Shawagfeh, S. Momani, Numerical investigations for systems of second-order periodic boundary value problems using reproducing kernel method . Applied Mathematics and Computation, 291 (2016), 137-148.

    [13] L. Yin and W. -Y. Cui, A generalization of Alzer inequalities related to exponential function. Proceeding of Jangjeon Mathematical Society, 18(3) 2015, 385-388.

Downloads

How to Cite

Dou, X., & Yin, L. (2019). A new Alzer type Inequality Related to Binomial Function. Global Journal of Mathematical Analysis, 7(1), 1-3. https://doi.org/10.14419/gjma.v7i1.23665

Received date: December 11, 2018

Accepted date: April 18, 2019

Published date: May 6, 2019