Fundamental groups of iterated line graphs

Authors

  • Essam Hamouda

  • Mohammed Fahmy

How to Cite

Hamouda, E., & Fahmy, M. (2013). Fundamental groups of iterated line graphs. Global Journal of Mathematical Analysis, 2(1), 1-5. https://doi.org/10.14419/gjma.v2i1.1489

Received date: November 8, 2013

Accepted date: December 5, 2013

Published date: December 15, 2013

DOI:

https://doi.org/10.14419/gjma.v2i1.1489

Abstract

in this article, the Euler characteristic of the  iterated line graph  and its complement  is studied.

 

References

  1. M. Aigner, "Graphs whose complement and line graph are isomorphic", J. of Combinatorial Theory 7 (1969) 273-275.
  2. J. Bondy, U. Murty, Graph theory with applications, New York: Macmillan; 1976.
  3. R. Ducke, "How is a graph's Betti number related to its genus?", The American Mathematical Monthly, Vol. 78, No. 4. (1971) 386-388.
  4. A. Hatcher, Algebraic topology, Cambridge University Press; 2001.
  5. R. Han, L. Gang, "Survey of maximum genus of graphs", J. of East China Normal University, No. 5 (2010), 1 – 19.
  6. M. Kotrbeık, M. Skoviera, Matchings, "cycle bases, and the maximum genus of a graph", the electronic j. of combinatorics 19(3) (2012), #P3.
  7. F. Larrión, M. Pizaña, R. Villarroel-Flores, "The fundamental group of the clique graph", European J. Combin. 30 (2009) 288-294.
  8. M. Imbert, "Fundamental groups of fat graphs", Note di Matematica Vol. 19, No. 2(1999) 257-268.
  9. W. Massy, Algebraic topology: An introduction. Harcourt, Brace & World, New York; 1967.
  10. S. Nada, E. H. Hamouda, "Fundamental group of dual graphs and applications to quantum space-time", Chaos, Solitons and Fractals 42 (2009) 500-503.
  11. B. Schwartz, "On Interchange Graphs", pacific J. of Mathematics, Vol. 27,No. 2.; (1968) 393-396.
  12. J. Stallings, "Topology of Finite Graphs", Invent. Math. 71, 551-565 (1983).
  13. A. van Roij, H. Wilf, "The Interchange Graph of a finite graph", Acta. Math. 16, (1983) 263-269.
  14. D. Zhou, R. Hao, W. He, "Lower bounds for the maximum genus of 4-regular graphs", Turk J Math 36 (2012), 530 – 537.

Downloads

How to Cite

Hamouda, E., & Fahmy, M. (2013). Fundamental groups of iterated line graphs. Global Journal of Mathematical Analysis, 2(1), 1-5. https://doi.org/10.14419/gjma.v2i1.1489

Received date: November 8, 2013

Accepted date: December 5, 2013

Published date: December 15, 2013