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Abstract

In this paper, we introduce and investigate two new subclasses of the function class Σ of bi-univalent functions defined in the
open unit disk, which are associated with the Hohlov operator, that is, a familiar special case of the widely- (and extensively-)
investigated Dziok-Srivastava linear operator. Furthermore, we find estimates on the Taylor-Maclaurin coefficients |a2| and
|a3| for functions in these new subclasses. Several (known or new) consequences of the results are also pointed out.
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1 Introduction, Definitions and Preliminaries

Let A denote the class of functions of the form:

f(z) = z +

∞∑
n=2

anzn, (1)

which are analytic in the open unit disk
U = {z : z ∈ C and |z| < 1}.

Further, by S we shall denote the class of all functions in A which are univalent in U.
The convolution or Hadamard product of two functions f, h ∈ A is denoted by f ∗ h and is defined as

(f ∗ h)(z) = z +

∞∑
n=2

anbnzn, (2)

where f(z) is given by (1) and h(z) = z +
∞∑

n=2

bnzn. In terms of the Hadamard product (or convolution), the Dziok-Srivastava

linear operator involving the generalized hypergeometric function, was introduced and studied systematically by Dziok and
Srivastava [5, 4] and (subsequently) by many other authors. Here, in our present investigation, we recall a familiar convolution
operator Ia,b,c due to Hohlov [8, 9], which indeed is a very specialized case of the widely- (and extensively-) investigated
Dziok-Srivastava operator.

For the complex parameters a, b and c with c 6= 0,−1,−2,−3, · · · , the Gaussian hypergeometric function 2F1(a, b, c; z)
is defined as

2F1(a, b, c; z) =

∞∑
n=0

(a)n(b)n

(c)n

zn

n!

= 1 +

∞∑
n=2

(a)n−1(b)n−1

(c)n−1

zn−1

(n− 1)!
(z ∈ U), (3)



68 Global Journal of Mathematical Analysis

where (α)n is the Pochhammer symbol (or the shifted factorial) defined as follows:

(α)n =
Γ(α + n)

Γ(α)
=

{
1 (n = 0)
α(α + 1)(α + 2) · · · (α + n− 1) (n = 1, 2, 3, · · · ). (4)

By using the Gaussian hypergeometric function given by (3), Hohlov [8, 9] introduced the familiar convolution operator
Ia,b,c as follows:

Ia,b;cf(z) = z 2F1(a, b, c; z) ∗ f(z),

= z +

∞∑
n=2

ϕnanzn (z ∈ U), (5)

where

ϕn =
(a)n−1(b)n−1

(c)n−1(n− 1)!
. (6)

Hohlov [8, 9] discussed some interesting geometrical properties exhibited by the operator Ia,b;c. The three-parameter family
of operators Ia,b;c contains, as its special cases, most of the known linear integral or differential operators. In particular, if
b = 1 in (5), then Ia,b;c reduces to the Carlson-Shaffer operator. Similarly, it is easily seen that the Hohlov operator Ia,b;c is
also a generalization of the Ruscheweyh derivative operator as well as the Bernardi-Libera-Livingston operator.

Some of the important and well-investigated subclasses of the univalent function class S include (for example) the class
S∗(α) of starlike functions of order α in U and the class K(α) of convex functions of order α in U. It is well known that every
function f ∈ S has an inverse f−1, defined by

f−1(f(z)) = z (z ∈ U)

and

f(f−1(w)) = w

(
|w| < r0(f); r0(f) = 1

4

)
,

where

f−1(w) = w − a2w
2 + (2a2

2 − a3)w
3 − (5a3

2 − 5a2a3 + a4)w
4 + · · · . (7)

A function f ∈ A is said to be bi-univalent in U if both f(z) and f−1(z) are univalent in U. Let Σ denote the class of
bi-univalent functions in U given by (1).

In 1967, Lewin [10] investigated the bi-univalent function class Σ and showed that |a2| < 1.51. On the other hand,
Brannan and Clunie [1] (see also [2, 3, 15]) and Netanyahu [12] made an attempt to introduce various subclasses of the
bi-univalent function class Σ and obtained non-sharp coefficient estimates on the first two coefficients |a2| and |a3| of (1).
But the coefficient problem for each of the following Taylor-Maclaurin coefficients:

|an| (n ∈ N \ {1, 2}; N := {1, 2, 3, · · · }

is still an open problem. Following Brannan and Taha [3], many researchers (see [6, 7, 11, 14, 16, 17]) have recently introduced
and investigated several interesting subclasses of the bi-univalent function class Σ and they have found non-sharp estimates
on the first two Taylor-Maclaurin coefficients |a2| and |a3|.

Making use of the Hohlov operator Ia,b;c, we introduce the following two new subclasses of the function class Σ.

Definition 1.1. A function f(z) given by (1) is said to be in the class Sa,b;c
Σ (α, λ) if the following conditions are satisfied:

f ∈ Σ and

∣∣∣∣arg

(
z(Ia,b;cf(z))′

(1− λ)z + λIa,b;cf(z)

)∣∣∣∣ <
απ

2
(0 < α 5 1; 0 5 λ 5 1; z ∈ U) (8)

and
∣∣∣∣arg

(
w(Ia,b;cg(w))′

(1− λ)w + λIa,b;cg(w)

)∣∣∣∣ <
απ

2
(0 < α 5 1; 0 5 λ 5 1; w ∈ U), (9)

where the function g is given by

g(w) = w − a2w
2 + (2a2

2 − a3)w
3 − (5a3

2 − 5a2a3 + a4)w
4 + · · · , (10)

that is, the extension of f−1 to U.
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We note that for λ = 0, a = c and b = 1, the class Sa,b;c
Σ (α, λ) reduces to the class Hα

Σ introduced and studied by
Srivastava et al. [14]. Putting λ = 1, a = c and b = 1, the class Sa,b;c

Σ (α, λ) reduces to the class of strongly bi-starlike
functions of order α(0 < α 5 1) and denoted by S∗Σ(α).

Definition 1.2. A function f(z) given by (1) is said to be in the class Ma,b;c
Σ (β, λ) if the following conditions are satisfied:

f ∈ Σ and <
(

z(Ia,b;cf(z))′

(1− λ)z + λIa,b;cf(z)

)
> β (0 5 β < 1; 0 5 λ 5 1; z ∈ U) (11)

and

<
(

w(Ia,b;cg(w))′

(1− λ)w + λIa,b;cg(w)

)
> β (0 5 β < 1; 0 5 λ 5 1; w ∈ U), (12)

where the function g is given by (10).

It is interesting to note that, for λ = 0, a = c and b = 1, the class Ma,b;c
Σ (β, λ) reduces to the class Hβ

Σ introduced and
studied by Srivastava et al. [14]. Putting λ = 1, a = c and b = 1, the class Ma,b;c

Σ (β, λ) reduces to the class of bi-starlike
functions of order β(0 < β 5 1) and denoted by SΣ(β).

The object of the present paper is to find estimates on the coefficients |a2| and |a3| for functions in the above-defined
subclasses Sa,b;c

Σ (α, λ) and Ma,b;c
Σ (α, λ) of the function class Σ by employing the techniques used earlier by Srivastava et al.

[14].
In order to derive our main results, we shall need the following lemma.

Lemma 1.3. (see [13]) If h ∈ P, then |ck| 5 2 for each k, where P is the family of all functions h, analytic in U, for which

<{h(z)} > 0 (z ∈ U),

where
h(z) = 1 + c1z + c2z

2 + · · · (z ∈ U).

2 Coefficient Bounds for the Function Class Sa,b;c
Σ (α, λ)

We begin by finding the estimates on the coefficients |a2| and |a3| for functions in the class Sa,b;c
Σ (α, λ).

Theorem 2.1. Let the function f(z) given by (1) be in the following class:

Sa,b;c
Σ (α, λ) (0 < α 5 1; 0 5 λ 5 1).

Then

|a2| 5 2α√
[2α(λ2 − 2λ) + (1− α)(2− λ)2]ϕ2

2 + 2α(3− λ)ϕ3

(13)

and

|a3| 5 2α

(3− λ)ϕ3
. (14)

Proof. It follows from (8) and (9) that

z
(Ia,b;cf(z)

)′
(1− λ)z + λIa,b;cf(z)

= [p(z)]α (15)

and

w
(Ia,b;cg(w)

)′
(1− λ)w + λIa,b;cg(w)

= [q(w)]α, (16)

where p(z) and q(w) in ℘ and have the following forms:

p(z) = 1 + p1z + p2z
2 + · · · (17)

and

q(z) = 1 + q1w + q2w
2 + · · · , (18)
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respectively. Now, equating the coefficients in (15) and (16), we get

(2− λ)ϕ2a2 = αp1, (19)

(λ2 − 2λ)ϕ2
2a

2
2 + (3− λ)ϕ3a3 =

1

2

[
α(α− 1)p2

1 + 2αp2

]
, (20)

−(2− λ)ϕ2a2 = αq1 (21)

and

(λ2 − 2λ)ϕ2
2a

2
2 + (3− λ)ϕ3(2a2

2 − a3) =
1

2

[
α(α− 1)q2

1 + 2αq2

]
. (22)

From (19) and (21), we find that

a2 =
αp1

(2− λ)ϕ2
=

−αq1

(2− λ)ϕ2
, (23)

which implies

p1 = −q1. (24)

Adding (20) and (22), we obtain

[2(λ2 − 2λ)ϕ2
2 + 2(3− λ)ϕ3]a

2
2 =

α(α− 1)

2
(p2

1 + q2
1) + α(p2 + q2). (25)

Substituting the value of a2 from (23) and (24) into (25), we get

p2
1 =

(2− λ)2ϕ2
2(p2 + q2)

[2α(λ2 − 2λ) + (1− α)(2− λ)2]ϕ2
2 + 2α(3− λ)ϕ3

. (26)

Applying Lemma 1.3 for the coefficients p2 and q2, we immediately have

|p1| 5 2(2− λ)ϕ2√
[2α(λ2 − 2λ) + (1− α)(2− λ)2]ϕ2

2 + 2α(3− λ)ϕ3

. (27)

Thus, (23) gives

|a2| 5 2α√
[2α(λ2 − 2λ) + (1− α)(2− λ)2]ϕ2

2 + 2α(3− λ)ϕ3

.

This gives the bound on |a2| as asserted in (13).
Next, in order to find the bound on |a3|, by subtracting (22) from (20), we get

2(3− λ)ϕ3a3 − 2(3− λ)ϕ3a
2
2 = α(p2 − q2) +

α(α− 1)

2
(p2

1 − q2
1). (28)

It follows from (23), (24) and (28) that

2(3− λ)ϕ3a3 =

[
2(3− λ)α2ϕ3

[2α(λ2 − 2λ) + (1− α)(2− λ)2]ϕ2
2 + 2α(3− λ)ϕ3

+ α

]
p2

+

[
2(3− λ)α2ϕ3

[2α(λ2 − 2λ) + (1− α)(2− λ)2]ϕ2
2 + 2α(3− λ)ϕ3

− α

]
q2.

Applying Lemma 1.3 once again for the coefficients p2 and q2, we readily get

|a3| 5 2α

(3− λ)ϕ3
.

This completes the proof of Theorem 2.1.
Putting λ = 0 in Theorem 2.1, we have the following corollary.

Corollary 2.2. Let the function f(z) given by (1) be in the class Sa,b;c
Σ (α) (0 < α 5 1). Then

|a2| 5 α

√
2

2(1− α)ϕ2
2 + 3αϕ3

(29)

and

|a3| 5 2α

3ϕ3
. (30)
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Taking a = c and b = 1, in Corollary 2.2, we get the following corollary.

Corollary 2.3. Let the function f(z) given by (1) be in the class Hα
Σ (0 < α 5 1). Then

|a2| 5 α

√
2

2 + α
(31)

and

|a3| 5 2α

3
. (32)

Remark 2.4. The bound on |a3| in Corollary 2.3 provides an improvement over the result of Srivastava et al. [14].

When λ = 1 in Theorem 2.1, we have the following corollary.

Corollary 2.5. Let the function f(z) given by (1) be in the class Sa,b,c
Σ (α, 1) (0 < α 5 1). Then

|a2| 5 2α√
(1− 3α)ϕ2

2 + 4αϕ3

and |a3| 5 α

ϕ3
.

3 Coefficient Bounds for the Function Class Ma,b;c
Σ (β, λ)

In this section, we find the estimates on the coefficients |a2| and |a3| for functions in the class Ma,b;c
Σ (β, λ).

Theorem 3.1. Let the function f(z) given by (1) be in the following class:

Ma,b;c
Σ (β, λ) (0 5 β < 1; 0 5 λ 5 1).

Then

|a2| 5
√

2(1− β)

(λ2 − 2λ)ϕ2
2 + (3− λ)ϕ3

(33)

and

|a3| 5 2(1− β)

(3− λ)ϕ3
. (34)

Proof. It follows from (11) and (12) that there exist p, q ∈ ℘ such that

z
(Ia,b;cf(z)

)′
(1− λ)z + λIa,b;cf(z)

= β + (1− β)p(z) (35)

and

w
(Ia,b;cg(w)

)′
(1− λ)w + λIa,b;cg(w)

= β + (1− β)q(w), (36)

where p(z) and q(w) have the forms (17) and (18), respectively. Equating coefficients in (35) and (36), we get

(2− λ)ϕ2a2 = (1− β)p1, (37)

(λ2 − 2λ)ϕ2
2a

2
2 + (3− λ)ϕ3a3 = (1− β)p2, (38)

−(2− λ)ϕ2a2 = (1− β)q1 (39)

and

(λ2 − 2λ)ϕ2
2a

2
2 + (3− λ)ϕ3(2a2

2 − a3) = (1− β)q2. (40)

From (37) and (39), we get

a2 =
(1− β)

(2− λ)ϕ2
p1 =

−(1− β)

(2− λ)ϕ2
q1 (41)

which implies

p1 = −q1. (42)
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From (38) and (40), we have

[2(λ2 − 2λ)2ϕ2
2 + 2(3− λ)ϕ3]a

2
2 = (1− β)(p2 + q2). (43)

Also, by using (41) and (43), we obtain

p2
1 =

(2− λ)2ϕ2
2(p2 + q2)

2[(λ2 − 2λ)2ϕ2
2 + (3− λ)ϕ3](1− β)

. (44)

Applying Lemma 1.3, we get

|p1| 5 (2− λ)ϕ2

√
2

[(λ2 − 2λ)2ϕ2
2 + (3− λ)ϕ3](1− β)

. (45)

Again, by applying Lemma 1.3 to (41) and using (45), we immediately find that

|a2| 5
√

2(1− β)

(λ2 − 2λ)ϕ2
2 + (3− λ)ϕ3

.

This gives the bound on |a2| as asserted in (33).

Next, in order to find the bound on |a3|, by subtracting (40) from (38), we get

2(3− λ)ϕ3a3 − 2(3− λ)ϕ3a
2
2 = (1− β)(p2 − q2). (46)

It follows from (43 and 46 that

2(3− λ)ϕ3a3 =
2(3− λ)ϕ3(1− β) + (λ2 − 2λ)ϕ2

2(1− β)

(λ2 − 2λ)ϕ2
2 + (3− λ)ϕ3

p2

− (λ2 − 2λ)ϕ2
2(1− β)

(λ2 − 2λ)ϕ2
2 + (3− λ)ϕ3

q2.

Applying Lemma 1.3 once again for the coefficients p2 and q2, we readily get

|a3| 5 2(1− β)

(3− λ)ϕ3
.

This completes the proof of Theorem 3.1.

Putting λ = 0 in Theorem 3.1, we have the following corollary.

Corollary 3.2. Let the function f(z) given by (1) be in the class Ma,b,;c
Σ (β) (0 5 β < 1). Then

|a2| 5
√

2(1− β)

3ϕ3
(47)

and

|a3| 5 2(1− β)

3ϕ3
. (48)

Remark 3.3. For a = c and b = 1, the bound on |a3| in Corollary 3.2 is provides an improvement over the result of
Srivastava et al. [14, Theorem2,1191].

When λ = 1 in Theorem 3.1, we get the following corollary for the well-known class Ma,b;c
Σ (β, 1) of bi-starlike functions

of order β.

Corollary 3.4. Let the function f(z) given by (1) be in the class Sa,b;c
Σ (β) (0 5 β < 1). Then

|a2| 5
√

2− 2β

2ϕ3 − ϕ2
2

and |a3| 5 1− β

ϕ3
.

Remark 3.5. Various other interesting corollaries and consequences of our main results (which are asserted by Theorems
2.1 and 3.1 above) can be derived similarly. The details involved may be left as an exercise for the interested reader.
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